





# Integrating Knowledge Graphs and Large Language Models for Advancing Scientific Research

Qiang Zhang, Jiaoyan Chen, Zaiqiao Meng

Tutorial at Learning on Graph Conference (LoG) 26th November, 2024



#### **About Me**



Dr. Jiaoyan Chen

https://chenjiaoyan.github.io/

- ➤ UK Lecturer (Assistant Professor) at the Department of Computer Science, University of Manchester (2022.11 now)
- Senior researcher at the Department of Computer Science, University of Oxford (part-time: 2022.12 – now; full time: 2017.11-2022.10)
- Ph.D. degree in Computer Science from Zhejiang University (2016)







- Knowledge Graph & Ontology
- Knowledge Representation
- Semantic Web & Semantic Techniques
  - Integration with Machine Learning & Language Models
  - Neural-symbolic Al

### Why combine KGs and LLMs?

#### Knowledge Graphs (KGs)

#### Cons:

- Implicit Knowledge
- Hallucination
- Indecisiveness
- Black-box
- Lacking Domainspecific/New Knowledge

Pros:

#### Pros:

- Structural Knowledge
- Accuracy
- Decisiveness
- Interpretability
- Domain-specific Knowledge
- Evolving Knowledge

- General Knowledge
- Language Processing
- Generalizability



#### Cons:

- Incompleteness
- Lacking Language Understanding
- Unseen Facts

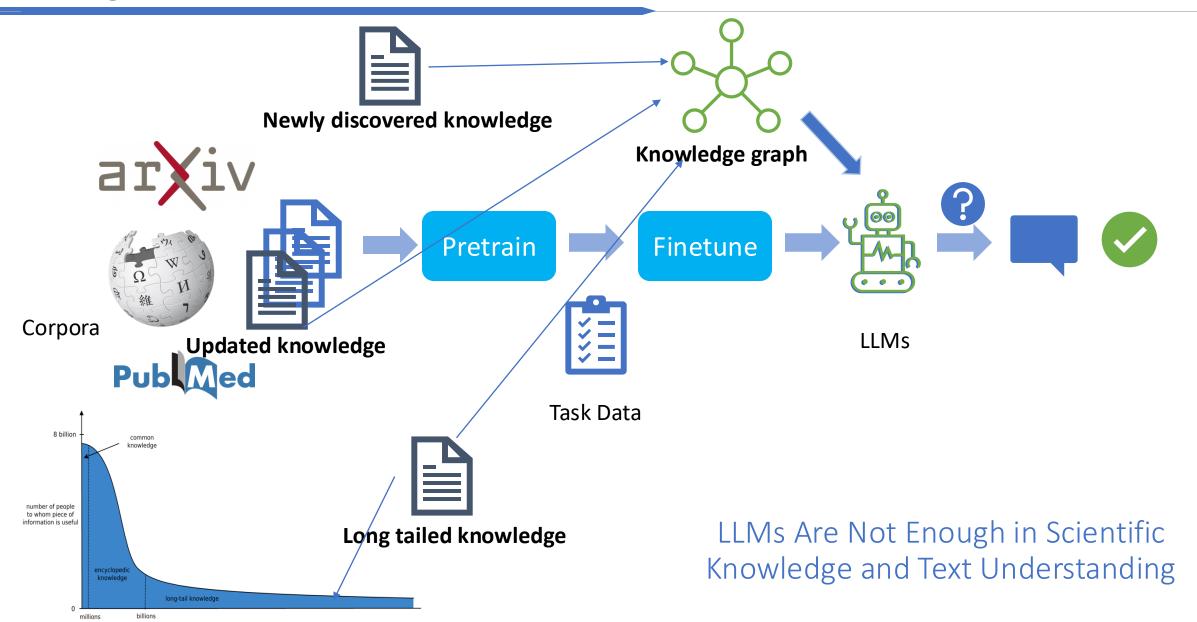
Pan, Shirui, et al. "Unifying large language models and knowledge graphs: A roadmap." *IEEE Transactions on Knowledge and Data Engineering* (2024).

More similar perspectives recently, e.g.,

Pan, Jeff, et al. "Large Language Models and Knowledge Graphs: Opportunities and Challenges." Transactions on Graph Data and Knowledge (2023).

Large Language Models (LLMs)

# Why combine KGs and LLMs?





# Part I: Knowledge Graphs for Science

Jiaoyan Chen

Tutorial at Learning on Graph Conference (LoG) 26th November, 2024



#### **Outline**





**KG Definitions and Core Concepts** 



**Ecotoxicological Effect Prediction: A Simple Case** 



KG for Life Science: Review & Challenges

# The Knowledge Graph

- The Knowledge Graph is a knowledge base used by Google and its services to enhance its search engine's results with knowledge gathered from a variety of sources.
  - Proposed around 2012
  - Knowledge ≈ Instances + Facts
  - KG ≈ Linked Structured Data (can be regarded as a multi-relational graph)

#### **Manchester Baby**

Computer :



The Manchester Baby, also called the Small-Scale Experimental Machine, was the first electronic stored-program computer. It was built at the University of Manchester by Frederic C. Williams, Tom Kilburn, and Geoff Tootill, and ran its first program on 21 June 1948. Wikipedia >

Date introduced: June 21, 1948

Also known as: Small-Scale Experimental Machine

Developer: Frederic Calland Williams; Tom Kilburn; Geoff

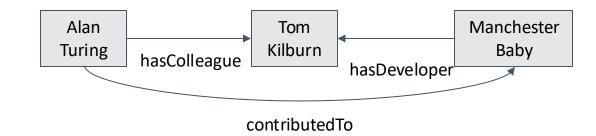
**Tootill** 

Memory: 1 kilobit (1,024 bits)

Successor: Manchester Mark 1

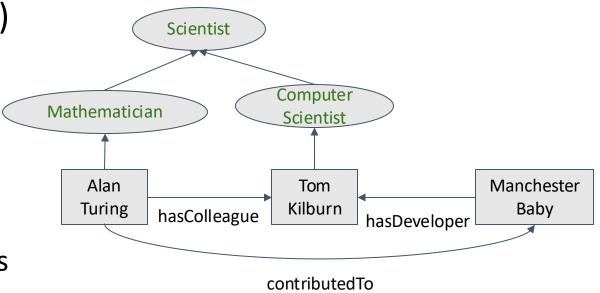
### A Knowledge Representation Perspective

- RDF (Resource Description Framework)
  - Triple: <Subject, Predicate, Object>
  - Representing facts:
    - E.g., <Manchester Baby, hasDeveloper, Tom Kilburn>



# A Knowledge Representation Perspective

- RDF (Resource Description Framework)
  - Triple: <Subject, Predicate, Object>
  - Representing facts:
    - E.g., <Manchester Baby, hasDeveloper, Tom Kilburn>
- RDF Schema
  - Meta data (schema) of instances and facts
    - E.g., class, property domain and range



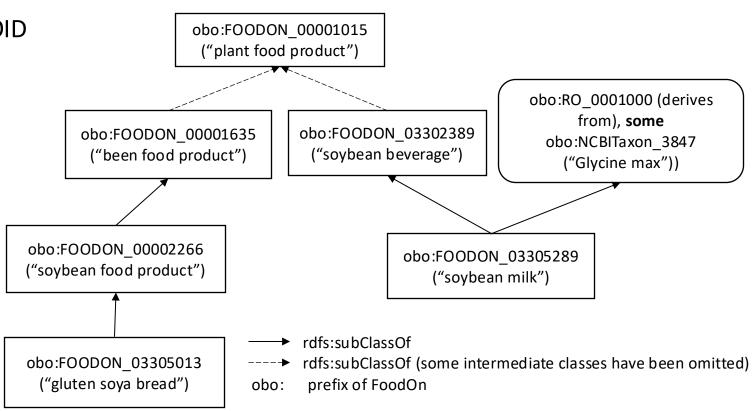
# A Knowledge Representation Perspective

- Web Ontology Language (OWL)
  - Taxonomies and vocabularies
     E.g., FoodOn, SNOMED CT, GO, DOID
  - Constraints and logical relationships (> schema)

Underpinned by **Description Logic** ( $\sqcap$ ,  $\sqcup$ ,  $\exists$ ,  $\forall$ ,  $\neg$ )

E.g., 'food material' ≡ 'environmental material' and ('has role' some 'food')

E.g., the cardinality of "hasParent" is 2



A segment of the food ontology FoodOn

# What is a Knowledge Graph?

```
RDF facts
relational graph
as Google
```

RDF facts + schema

```
(OWL) Ontology
```

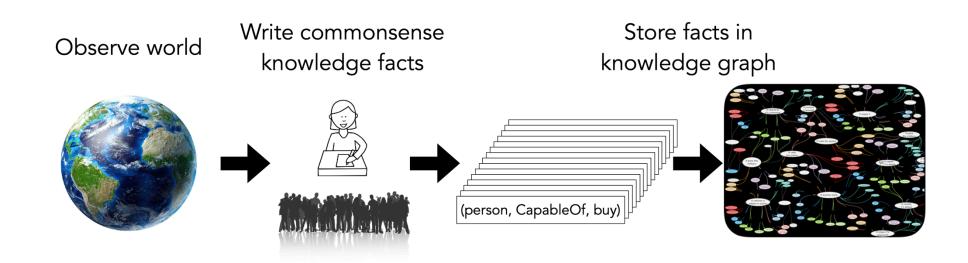
graph + reasoning agent the above two are simplified cases of (OWL) ontology

### **Knowledge Graph vs Database**

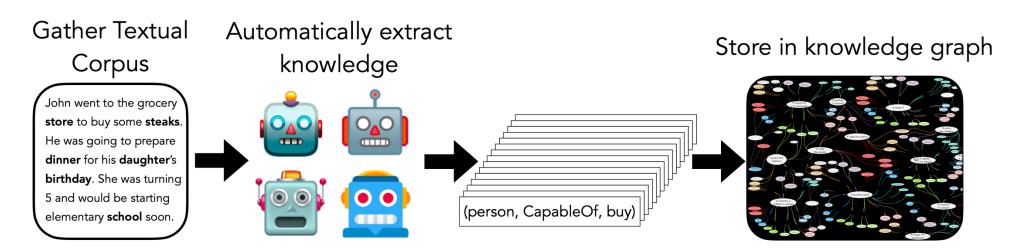
- ✓ Intuitive (e.g., no "foreign keys")
- ✓ Data + schema (ontology)
- ✓ IRI/URI not strings
- ✓ Flexible & extensible
- ✓ Rule language
  - Location + capital → location
  - Parent + brother → uncle
- ✓ Other kinds of query
  - Navigation
  - Similarity & Locality

(From Ian Horrocks)

- Crowdsourcing (Encyclopedias) & Domain Experts
  - DBpedia, Wikidata, Zhishi.me (中文), LinkedGeoData, GeoName
  - Domain ontologies like GO, SNOMED CT, FoodON



- The Web, Natural Language Text
  - Open Information Extraction, Web Mining



NLP and ML techniques: NER, Categorization, Relations extraction, Entity linking, etc.

- Semi-structured and structured data
  - DBs, Web Tables, Excel Sheets, CSV files, etc.

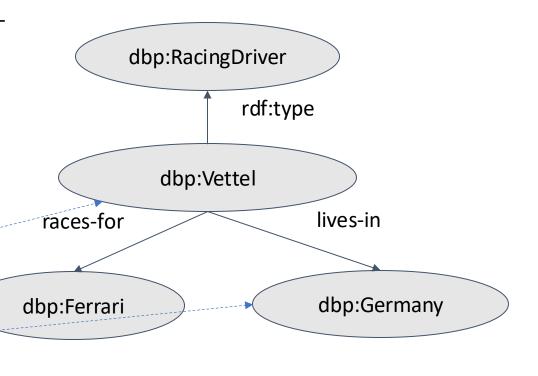
**Table to KG transformation** (by e.g., rules)

**Table to KG matching** (cell to entity, column type to class, intercolumn relation to property, e.g., Sebastian Ferrari = dbp:Ferrari)

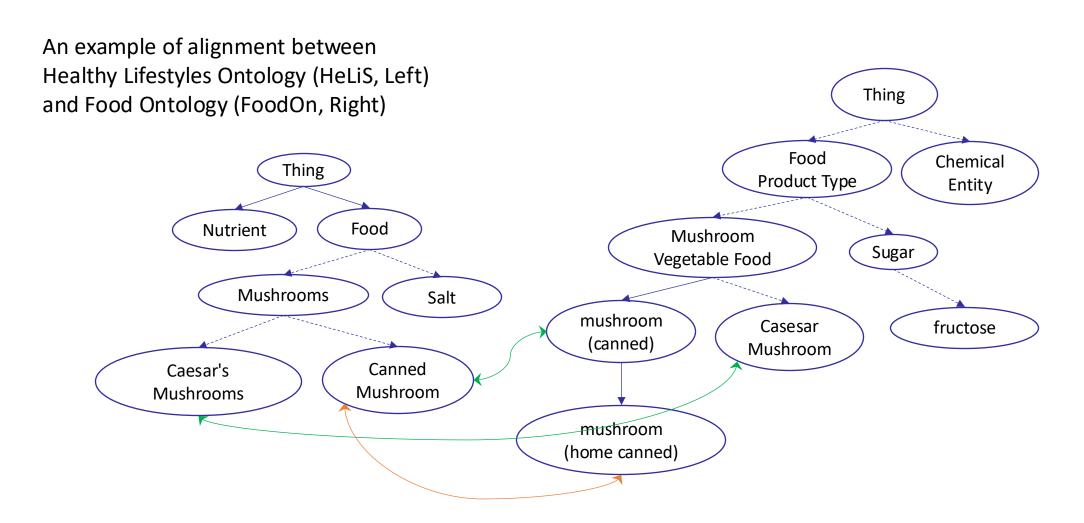
#### & New knowledge extraction for KG population

Hamilton races-for Mercedes? Hamilton lives-in England? Hamilton rdf:type Racing Driver?

| Alonso           | McLaren  | Spain   |
|------------------|----------|---------|
| Hamilton         | Mercedes | England |
| Sebastian Vettel | Ferrari  | Germany |



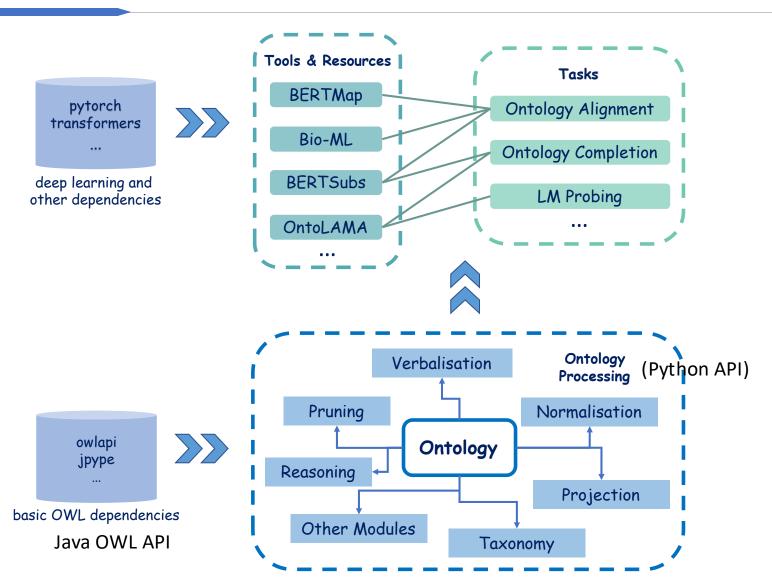
Data integration (alignment, modulization, canonicalization, etc.)



# **Deep**Onto

An LM-based Ontology Engineering Library

https://github.com/KRR-Oxford/DeepOnto



He, Y., et al. "DeepOnto: A Python package for ontology engineering with deep learning." Semantic Web Journal (2024).

#### **Outline**





**KG Definitions and Core Concepts** 

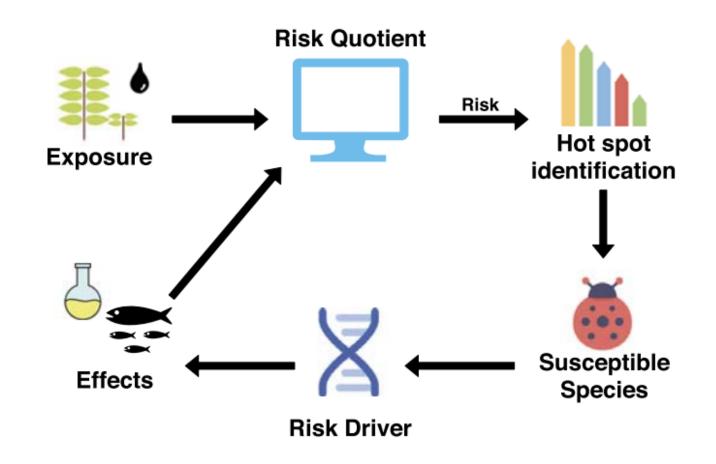


**Ecotoxicological Effect Assessment: A Simple Case** 



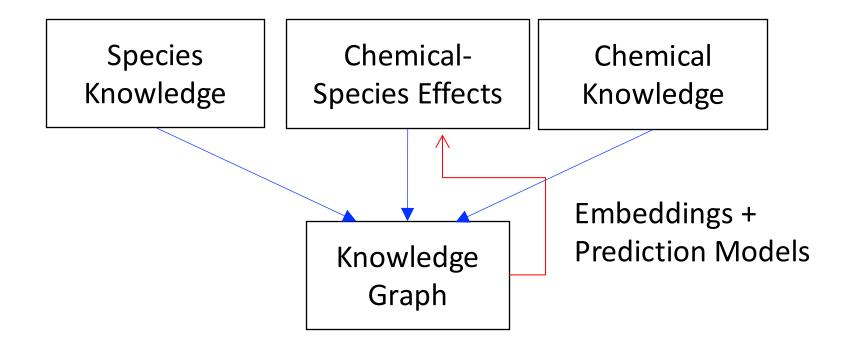
KG for Life Science: Review and Challenges

# **Ecotoxicological Effect Assessment**



Simplified pipeline used in Norwegian Institute for Water Research Chemical effect data gathered from laboratory experiments

### **Ecotoxicological Effect Assessment**



[Myklebust et al. 2022]: use **KG and its embeddings**, focus on **mortality**, i.e., lethal concentration to 50% of test population (LC50) measured at 48 hours

# How to Construct a Knowledge Graph?

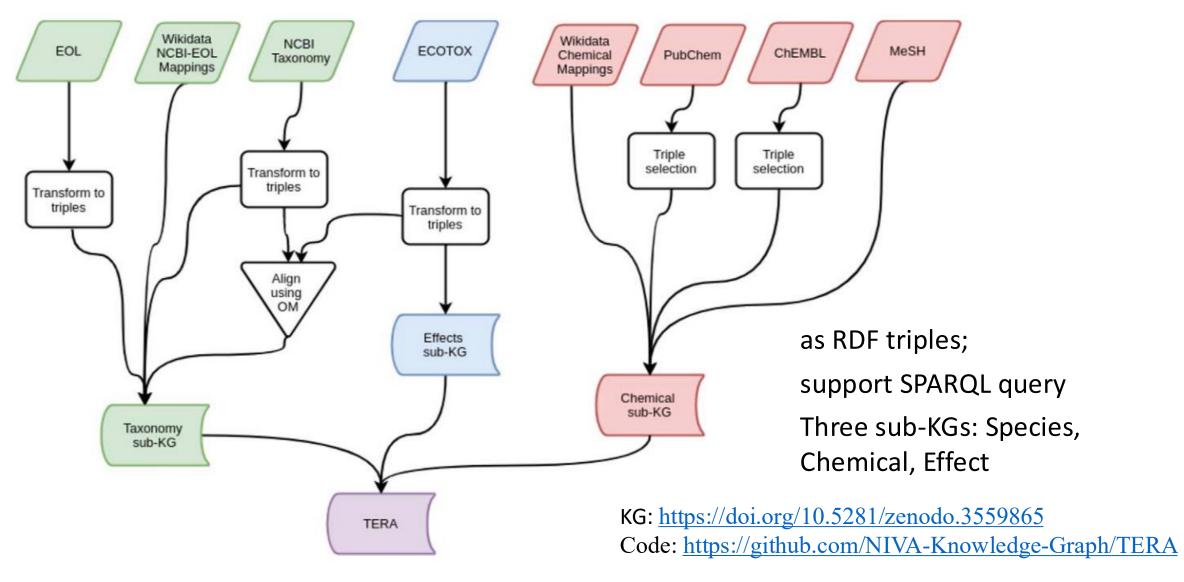
#### Data sources

- Biological effects: ECOTOXicology database (~1M results, ~12K compounds, ~13K species, ~0.6% coverage of chemical-species pair coverage)
- Biological: NCBI Taxonomy, Encyclopedia of Life (EOL; for species traits)
- Chemical: PubChem, ChEMBL, MeSH

#### Data integration

- Wikidata mappings of species and chemicals
- Ontology alignment tools
  - LogMap, AML: Lexical matching & index, reasoning
  - Levenshtein distance
  - Alternative: BERTMap (<a href="https://github.com/KRR-Oxford/DeepOnto">https://github.com/KRR-Oxford/DeepOnto</a>): BERT fine-tuning, lexical matching & index, reasoning-based repair

# **TERA: Toxicological Effect and Risk Assessment KG**



# **TERA: Toxicological Effect and Risk Assessment KG**

| subject                | predicate                  | object                              |  |  |
|------------------------|----------------------------|-------------------------------------|--|--|
|                        | Effects sub-KG             |                                     |  |  |
| et:test/1147366        | et:compound                | et:chemical/134623                  |  |  |
| et:test/1147366        | et:species                 | et:taxon/1                          |  |  |
| et:test/1147366        | et:hasResult               | et:result/102570                    |  |  |
| et:result/102570       | et:endpoint                | et:endpoint/LC50                    |  |  |
| et:result/102570       | et:effect                  | et:effect/Mortality                 |  |  |
|                        | Entity Mappings            |                                     |  |  |
| et:taxon/1             | owl:sameAs                 | ncbi:taxon/90988                    |  |  |
| ncbi:taxon/90988       | owl:sameAs                 | wd:Q2700010                         |  |  |
| wd:Q2700010            | owl:sameAs                 | eol:211492                          |  |  |
|                        | Taxonomy sub-KG            |                                     |  |  |
| ncbi:taxon/90988       | rdf:type                   | ncbi:taxon/51137 <sup>2</sup>       |  |  |
| cbi:taxon/90988        | rdf:type                   | ncbi:division/10                    |  |  |
| cbi:taxon/90988        | ncbi:scientific_name       | "Pimephales promelas                |  |  |
| cbi:taxon/90988        | ncbi:rank                  | ncbi:species                        |  |  |
| ncbi:taxon/51137       | rdfs:subClassOf            | ncbi:taxon/7953 <sup>3</sup>        |  |  |
|                        | Chemical sub-KG            |                                     |  |  |
| mesh:D003671           | mesh:broaderDescriptor     | mesh:D001549 <sup>5</sup>           |  |  |
| mesh:D003671           | mesh:pharmacologicalAction | $\mathtt{mesh:} \mathtt{D007302}^6$ |  |  |
| chembl_m:CHEMBL1453317 | chembl:hasTarget           | chembl_t:CHEMBL1907594              |  |  |
|                        |                            |                                     |  |  |

chembl:relSubsetOf

1

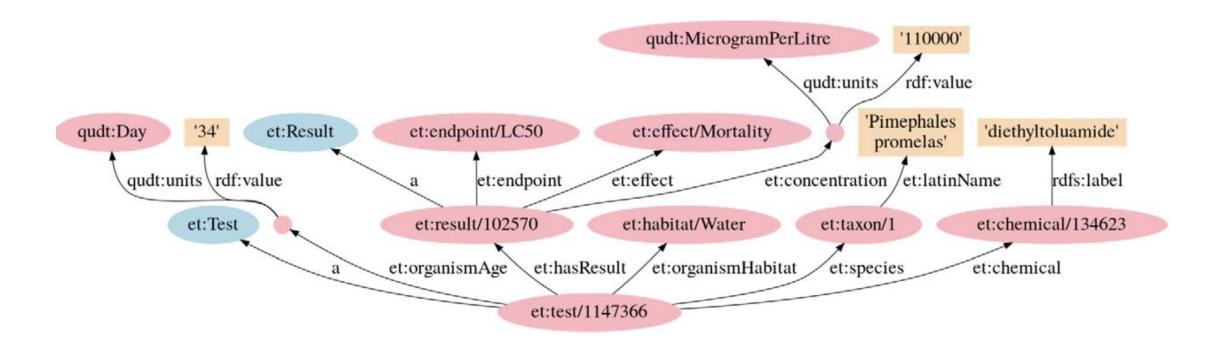
chembl\_t:CHEMBL1907594

Examples of

**RDF Triples** 

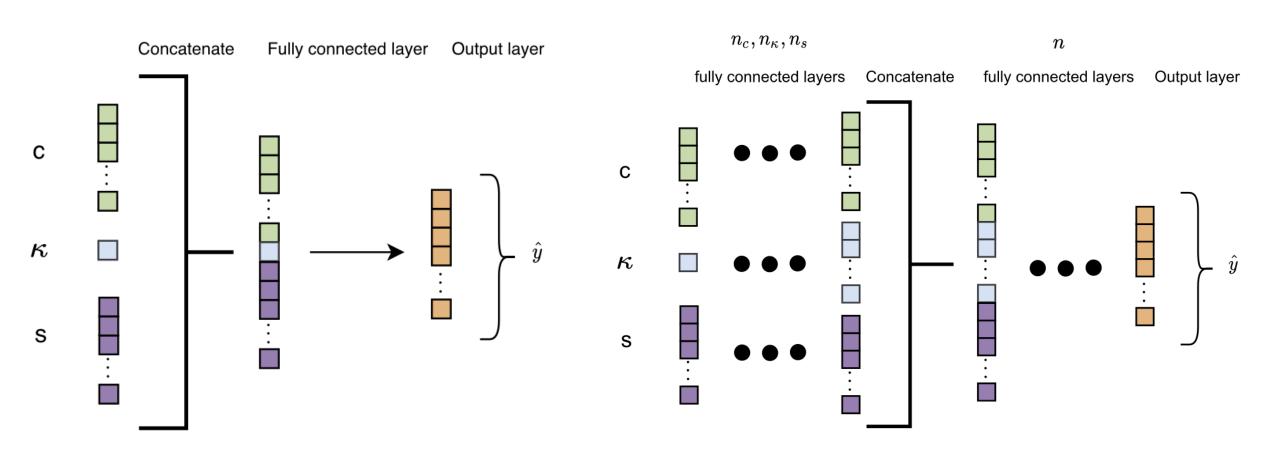
chembl t:CHEMBL31372738

### **TERA: Toxicological Effect and Risk Assessment KG**



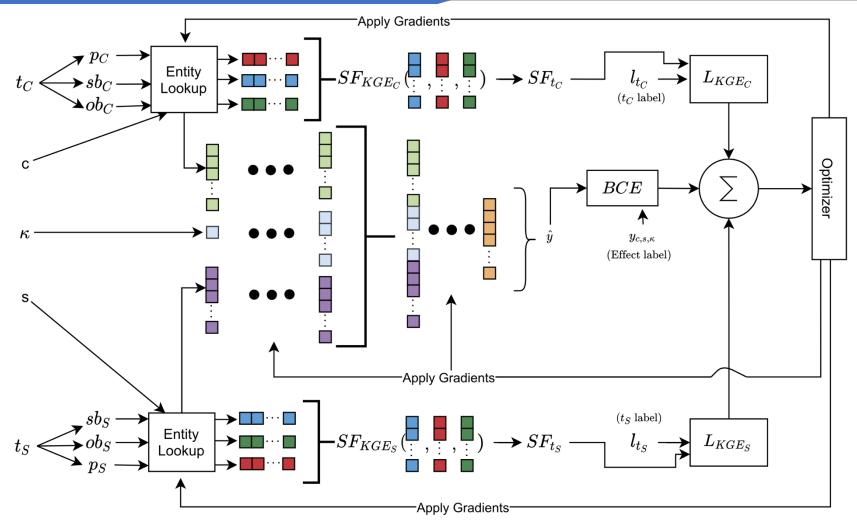
Example of an ECOTOX test and related triples

#### **Link Prediction with TERA**



Baselines: Simple (left) and complex (right) MLPs, with the input of pretrained KG embeddings of the species and chemical

#### **Link Prediction with TERA**



Method: Simultaneously train the KG embeddings and the MLP

$$L = \alpha_C L_{KGE_C} + \alpha_S L_{KGE_S} + \alpha_{MLP} L_{MLP}$$

#### **Link Prediction with TERA**

- Tested TransE, HolE, DistMult, HAKE, ConvE, ConvKB, RotatE, pRotatE, and three different sampling strategies
- Result summary:
   in the majority of the settings, Sensitivity (TP/TP+FN) > 0.9, Specificity
   (TN/FP+TN) > 0.75)

| Chemical                        | Species                      | $\log(\kappa)$ | Predicted | Lethal  | Classification |
|---------------------------------|------------------------------|----------------|-----------|---------|----------------|
| D001556 (hexachlorocyclohexane) | 59899 (walking catfish)      | -3.4           | 0.97      | 1 (yes) | TP             |
| C037925 (benthiocarb)           | 7965 (sea urchins)           | 0.9            | 0.2       | 0 (no)  | TN             |
| D026023 (permethrin)            | 378420 (bivalves)            | 0.7            | 0.96      | 1 (yes) | TP             |
| D011189 (potassium chloride)    | 938113 (megacyclops viridis) | 6.7            | 0.27      | 1 (yes) | FN             |
| C427526 (carfentrazone-ethyl)   | 208866 (eudicots)            | -0.9           | 0.82      | 0 (no)  | FP             |
| D010278 (parathion)             | 201691 (green sunfish)       | -0.9           | 0.86      | 0 (no)  | FP             |

Example predictions by the **simultaneously training method** with the best combination of **HolE-DistMult** 

# **Discussion from a KG Perspective**

- KG construction with more data sources?
  - Literatures & reports
  - Data of specific scientific/experimental systems (e.g., in AnIML)
  - Multi-modal data
- Link prediction
  - Accuracy & explanation
  - Multi-modal semantic embedding
  - + symbolic reasoning

#### **Outline**





**KG Definitions and Core Concepts** 



**Ecotoxicological Effect Assessment: A Simple Case** 



KG for Life Science: Review and Challenges

#### **KG** for Life Science

Knowledge Graph
Construction and
Management
(Sect. 3)

- Alignment for Knowledge Validation
- Knowledge Integration
- Repositories of Ontologies and Mappings
- Ontology Extension
- Instance Matching

Life Science Knowledge Discovery (Sect. 4)

- Therapeutics and Drug Discovery
- Protein Function Prediction
- Predictions for Healthcare

Knowledge Graph for Explainable Al (Sect. 5)

- Explainable AI for Healthcare Practice
- Explainable AI for Knowledge Discovery
- Explainable AI for KG Construction

#### KG in Life Sciences (Sect. 2)

- Schema-less KGs: Facts in RDF triples
- Schema-based KGs: RDFS, OWL, SHACL, etc.
- Simple ontologies: Taxonomies
- Expressive OWL ontologies

#### Challenges for Life Science KGs (Sect. 6)

- Scalability
- Evolution & Quality Assurance
- Heterogeneity: Multi-domain & Multimodality
- Human Interaction & Explainability
- Personalized & Customized KGs
- Distributed KGs
- Representation Learning: Symbolic & Subsymbolic Integration

Chen, Jiaoyan, et al. "Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities." *Transactions On Graph Data and Knowledge* (2024). (New, open access journal in the KG community)



# Part II: Scientific Large Language Models

Qiang Zhang

qiang.zhang.cs@zju.edu.cn

Tutorial at Learning on Graph Conference (LoG) 26th November, 2024



#### **About Me**





**Dr. Qiang Zhang** 

- https://person.zju.edu.cn/zhangqiang
- https://github.com/HICAI-ZJU
- https://scimind.ai/resource/

- I'm an Assistant Professor under the Hundred Talents Program at <u>Zhejiang University</u>, since 2021.9.
- Before that, I was a postdoctoral research fellow in the <u>Centre for Artificial Intelligence</u> in <u>University College London (UCL)</u> in UK. I studied for the Ph.D. degree at UCL from 2017-2020.
- ➤ Prior to that, I obtained M.Sc. from Chinese Academy of Sciences in 2017 and B.Sc. from Shandong University in 2014.









- ❖ AI theory: data-efficient machine learning, foundation model.
- ❖ Applications: natural language processing, knowledge graphs, **AI for Science**.
- ❖ Publications: nature portfolio \* 5, top-tier conference papers \* 52, patents \*4, Google Scholar citations: 5000+.

#### **Outline**



**Introduction and Preliminary** 

Scientific Large Language Models

**3** Challenges and Perspective

#### **Outline**





### **Introduction and Preliminary**



Scientific Large Language Models



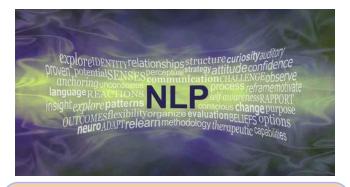
**Challenges and Perspective** 

#### **LLMs Revolutionize AGI**



#### **Upstream Techniques**

Pre-trained Large Language Model, e.g., GPT, GLM, LLaMA

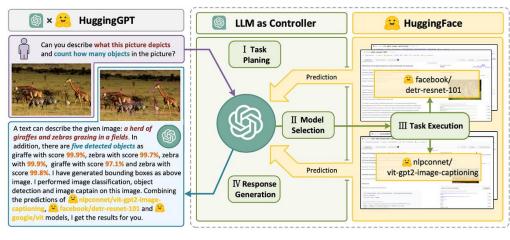


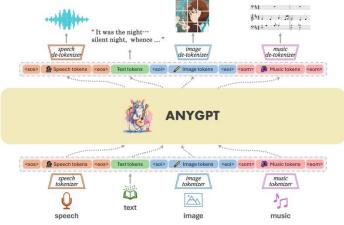
Computational Linguistics: Understanding human language through computational models! **Downstream Tasks** 

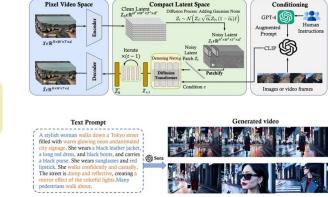
**Question Answering** 

**Knowledge Extraction** 

**Complex Reasoning** 







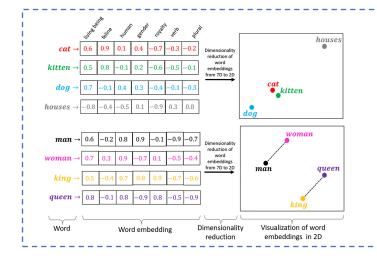
Hugging GPT: Solving AI Tasks with Chat GPT and its Friends in Hugging Face, <a href="https://arxiv.org/pdf/2303.17580">https://arxiv.org/pdf/2303.17580</a>, 2023.

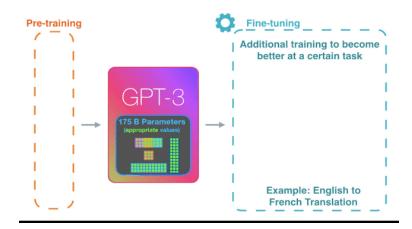
AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling, <a href="https://arxiv.org/abs/2402.12226">https://arxiv.org/abs/2402.12226</a>, 2024

Sora, <a href="https://openai.com/index/sora/">https://openai.com/index/sora/</a> OpenAI, 2024

# **LLMs Limited to Human Language**

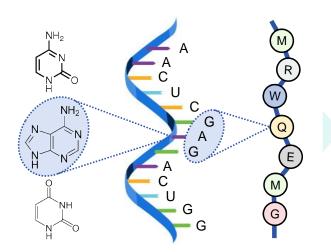






#### What can GPTs do?

- 1. Chatbots talking to historical figures
- 2. Code generation based on text descriptions
- 3. Answer medical questions
- 4. Stylistic transfer of text
- 5. Write creative novels
- 6. .....



Protein: MOTS-c

• Gene: MT-RNR1

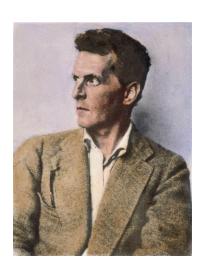
• Organism: Homo sapiens

• Sequences:

MRWOEMGYIFYPRKLR

**Question:** What is the solubility of this protein?

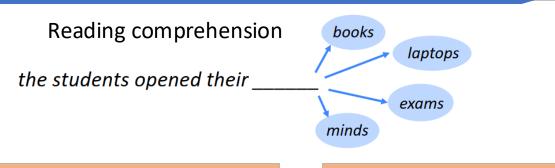
General LLMs The solubility of a specific protein, such as MOTS-c, isn't typically available as a standard piece of information. Protein solubility can depend on various factors, including pH, temperature, ....

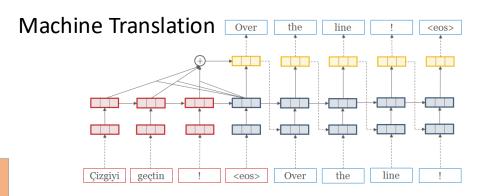


"The limits of my language mean the limits of my world."
--Ludwig Wittgenstein, 1921

# Scientific Language Understanding







Symbolized human language

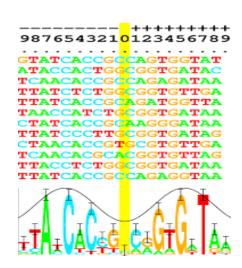


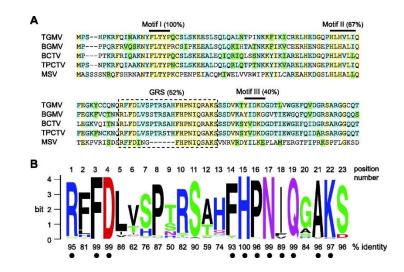
Natural language Models

Symbolized biological language



#### Genomic/Protein language Models







Gene Protein Central Law

# Scientific Language Understanding

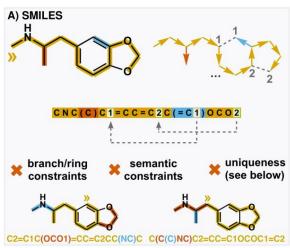


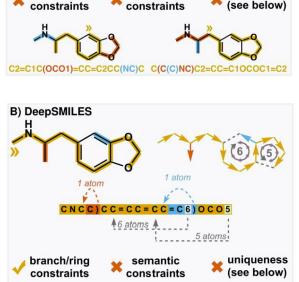
#### Symbolized molecule language

C) InChl

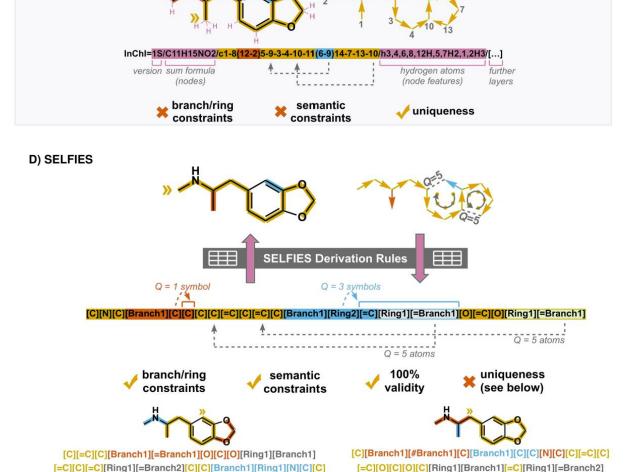


#### Molecular language Models



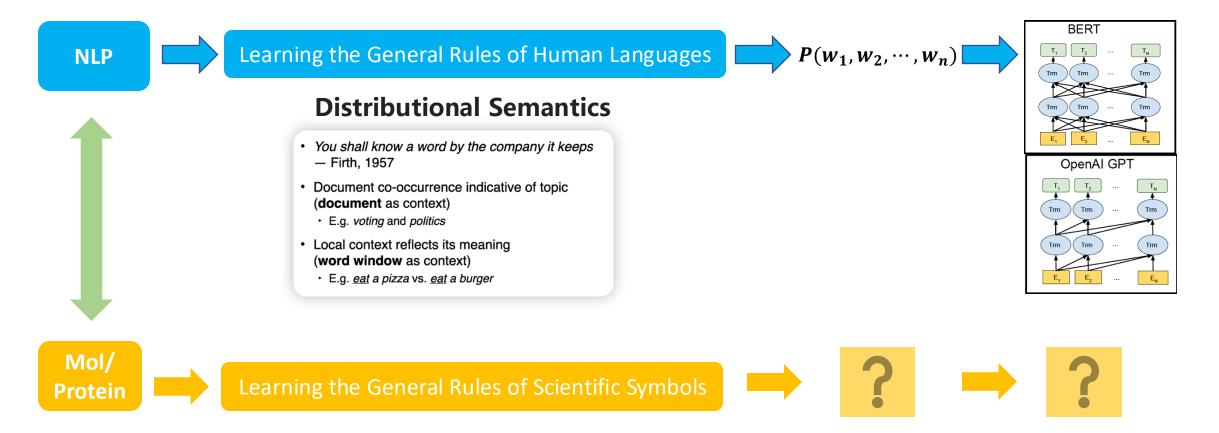


CCC)NC)))C=CC=COCOC5=C9



# **LLMs for Scientific Language?**





Fundamental Question: Does the Distributional Semantics Hypothesis Hold?



## **Outline**





**Introduction and Preliminary** 



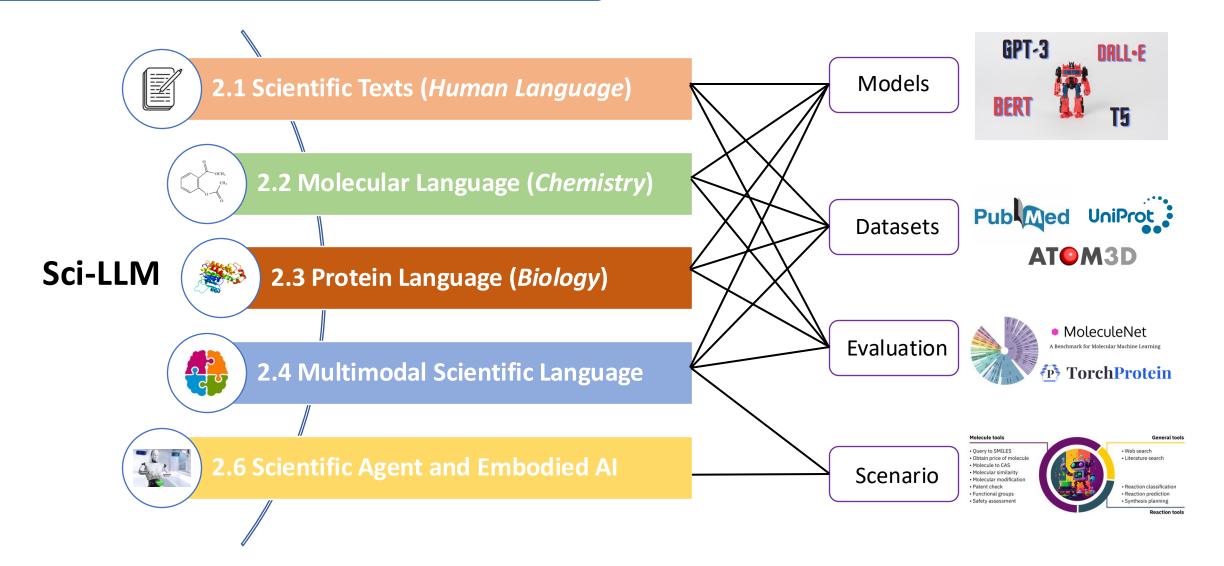
**Scientific Large Language Models** 



**Challenges and Perspective** 

# **Scope of Scientific LLM**





## **Outline**





**Introduction and Preliminary** 



**Scientific Large Language Models** 

2.1 Scientific Texts



**Challenges and Perspective** 

## **Text-Sci-LLM: Models & Datasets**



- ❖ Biology + Chemistry + Comprehensive LLM
  - Architecture: **BERT**-based (BioBERT, ChemBERT), **GPT**-based (BioGPT, PharmLLM) and **GLM**-based (SciGLM)
  - Corpus: Initially trained on broad corpora like Wikipedia and papers and then fine-tuned on specific tasks















Table 1. Summary of Text-Sci-LLMs

| Domain        | Model                | Time    | #Parameters | Base model | Pretraining dataset             | Open-<br>source |
|---------------|----------------------|---------|-------------|------------|---------------------------------|-----------------|
|               | BioELMo [150]        | 2019.04 | -           | ELMo       | PubMed                          | <b>√</b>        |
|               | BioBERT [177]        | 2019.05 | 117M        | BERT       | PubMed, PMC                     | ✓               |
|               | BlueBERT [263]       | 2019.07 | 117M        | BERT       | PubMed                          | ✓               |
|               | BioMegatron [299]    | 2020.10 | 345M-1.2B   | BERT       | PubMed, PMC                     | ✓               |
|               | PubMedBERT [113]     | 2020.10 | 117M        | BERT       | PubMed                          | ×               |
| Dielogy       | BioM-BERT[6]         | 2021.06 | 235M        | BERT       | PubMed, PMC                     | ✓               |
| Biology       | BioLinkBERT[386]     | 2022.03 | 110M, 340M  | BERT       | PubMed                          | ✓               |
|               | BioGPT [219]         | 2023.03 | 347M        | GPT        | PubMed                          | ✓               |
|               | BioMedGPT-LM [221]   | 2023.08 | 7B          | LLaMA      | PMC, arXiv, WIPO                | ✓               |
|               | BioinspiredLLM [222] | 2024.02 | 13B         | Llama-2    | Biological article              | ✓               |
|               | BioMistral [172]     | 2024.02 | 7B          | Mistral    | PMC                             | $\checkmark$    |
|               | ChemBERT [115]       | 2021.06 | 120M        | BERT       | Chemical journals               | <b>√</b>        |
| Chemistry     | MatSciBERT [118]     | 2021.09 | 117M        | BERT       | Elsevier journals               | ✓               |
| •             | MaterialsBERT [298]  | 2022.09 | -           | BERT       | Material journals               | ✓               |
|               | ChemLLM [397]        | 2024.02 | 7B          | InternLM2  | ChemData and Multi-Corpus       | ✓               |
|               | ChemDFM [419]        | 2024.01 | 13B         | InternLM2  | Chemical literature, textbooks  | ✓               |
|               | PharmGPT [48]        | 2024.02 | 13B, 70B    | LLaMA      | Paper, report, book, etc.       | ×               |
|               | SciBERT [18]         | 2019.09 | 117M        | BERT       | Semantic Scholar                | <b>✓</b>        |
| Comprehensive | ScholarBERT [131]    | 2023.05 | 340M, 770M  | BERT       | Wiki, Books, etc.               | ✓               |
|               | DARWIN-Base [367]    | 2023.08 | 7B          | LLaMA      | SciQ, Web of Science            | ✓               |
|               | SciGLM [367]         | 2024.03 | 6B, 32B     | ChatGLM3   | SciInstruct                     | ✓               |
|               | Uni-SMART [367]      | 2024.06 | 7B          | -          | Patents, news, literature, etc. | ×               |
|               | INDUS [25]           | 2023.08 | 125M        | RoBERTa    | wikipedia, PubMed, PMC, etc.    | ×               |

# **Text-Sci-LLM: Encoder-only**



#### Pre-training of BioBERT

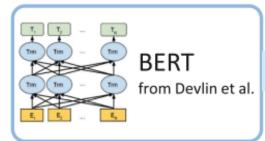
Pre-training Corpora



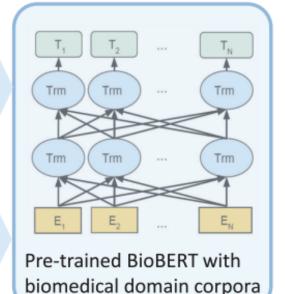


13.5B words

Weight Initialization



**BioBERT Pre-training** 



### Fine-tuning of BioBERT

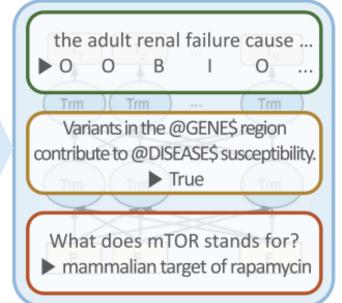
Task-Specific Datasets

Named Entity Recognition NCBI disease, BC2GM, ...

Relation Extraction EU-ADR, ChemProt, ...

Question Answering BioASQ 5b, BioASQ 6b, ...

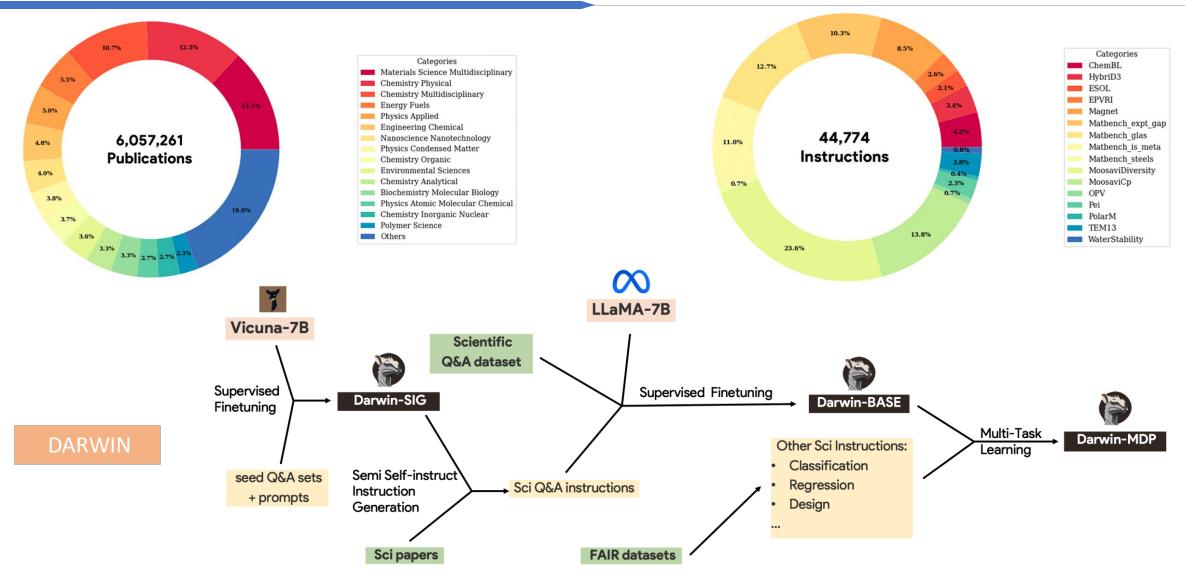
BioBERT Fine-tuning



BioBERT: A pre-trained biomedical language representation model for biomedical text mining, Bioinformatics, 2019

# **Text-Sci-LLM: Decoder-only**





DARWIN Series: Domain Specific Large Language Models for Natural Science, <a href="https://arxiv.org/pdf/2308.13565">https://arxiv.org/pdf/2308.13565</a>, 2023

# **Text-Sci-LLM: Encoder-decoder**



**Problem** When an electron in a certain excited energy level in a one-dimensional box of length  $2.00 \setminus u00c5$  makes a transition to the ground state, a photon of wavelength 8.79 nm is emitted. Find the quantum number of the initial state.

#### **Correct Answer: 4**

#### Predicted Solution by ChatGLM3-32B-Base (Served as baseline)

The ground state has n=1. The energy in the n=1 state is  $\frac{1}{L^2}$ . For the n=2 state, this becomes  $\left(\frac{1}{2L}\right)^2$ .

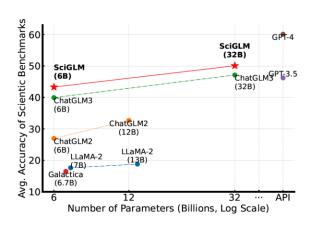
Thus, this energy difference is  $\frac{1}{2^2} - \frac{1}{1^2} = \frac{9}{4}$ .

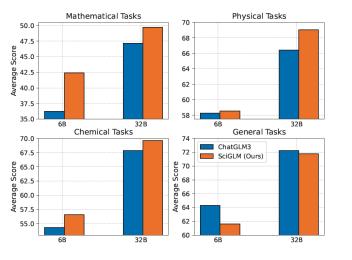
By de Broglie's equation,  $hc/\bar{\lambda}=\frac{9}{4hc\nu}$ , so  $\nu=\frac{4hc}{9\lambda}$ . Thus,  $E=h\nu=hc\frac{4}{9\lambda}$ .

Therefore, n=2, thus the answer is 2.

#### **SciInstruct** Physics Bootstrapped QA dataset **Human Conclusion** How to determine the harmonic Problem vibration frequency of a single Problem 1 Comprehension degree of freedom system? CoT 1 LMs 🚱 mistakes Answer 1 Annotate Sample Chemistry Answer 1 LLMs $\Rightarrow$ Try to calculate the boiling point (G) Calculation Problem n Labeled Data of water at 670kPa external Problem n mistakes CoT n Positive Data Answer n Math Answer n False reasoning Instruction The number of asymptotes of the curve $y=\sqrt{\frac{x^2+x}{x^2-1}}$ is Negative Data Self-Reflective Annotation -quality Critic & Revise Classifier Filter Stage Formal Proofs (Lean) QA Sample theorem const\_add\_term {a} w/o R Filter negatives [add comm monoid a] (k n x a Retain positives a') $(h : k + a = a') : \n k + @term$ Reasoning steps (R) $\alpha$ n x a = term n x a' := $-\cdot -\cdot -\cdot -\cdot -$ Annotation ·- Filtering

#### **SciGLM**





## **Text-Sci-LLM: Evaluation**



Table 2. Summary of the benchmarks for Text-Sci-LLMs

| Dataset                                                                                                              | Last updated                                                              | Subset                                                                                                                         | #Item                                                  | Domain                                                                             | Type                                                                                   | Capability                                                                   | Language |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------|
| MMLU [127] 2020.09                                                                                                   |                                                                           | High-school-biology<br>High-school-chemistry<br>College-biology<br>College-chemistry                                           | 344<br>227<br>162<br>110                               | Biology<br>Chemistry<br>Biology<br>Chemistry                                       | Multiple choice                                                                        | Pre-college<br>Pre-college<br>College<br>College                             | English  |
| C-Eval [138] Mid-school-chemic<br>High-school-biolog<br>High-school-chem                                             |                                                                           | Mid-school-biology<br>Mid-school-chemistry<br>High-school-biology<br>High-school-chemistry<br>College-chemistry                | 218<br>210<br>199<br>196<br>253                        | Biology<br>Chemistry<br>Biology<br>Chemistry<br>Chemistry                          | Multiple choice                                                                        | Pre-college<br>Pre-college<br>Pre-college<br>Pre-college<br>College          | Chinese  |
| AGIEval [424]                                                                                                        | 2023.04                                                                   | Gaokao-biology<br>Gaokao-chemistry                                                                                             | 210<br>207                                             | Biology<br>Chemistry                                                               | Multiple choice                                                                        | Pre-college                                                                  | Chinese  |
| ScienceQA [216]                                                                                                      | 2022.09                                                                   | Natural-science-biology<br>Natural-science-chemistry                                                                           | 4098<br>1194                                           | Biology<br>Chemistry                                                               | Multiple choice / QA                                                                   | Pre-college                                                                  | English  |
| XieZhi [114]                                                                                                         | 2023.06                                                                   | Science-biology<br>Science-chemistry                                                                                           | 2831<br>399                                            | Biology<br>Chemistry                                                               | Multiple choice                                                                        | Mixed                                                                        | Both     |
| SciEval [313] 2023.08                                                                                                |                                                                           | Basic-biology Knowledge-biology Calculation-biology Research-biology Basic-chemistry Knowledge-chemistry Calculation-chemistry | 2142<br>1369<br>299<br>995<br>2909<br>1700<br>3396     | Biology<br>Biology<br>Biology<br>Biology<br>Chemistry<br>Chemistry<br>Chemistry    | Multiple choice / QA                                                                   | Mixed                                                                        | English  |
| GAOKAO-Bench [406]                                                                                                   | 2023.11                                                                   | Biology<br>Chemistry                                                                                                           | 266<br>133                                             | Biology<br>Chemistry                                                               | Multiple choice / QA                                                                   | Mixed                                                                        | Chinese  |
| SciKnowEval [98]                                                                                                     | 2024.06                                                                   | Biology<br>Chemistry                                                                                                           | 27730<br>22250                                         | Biology<br>Chemistry                                                               | Multiple choice / QA<br>/ True or flase                                                | Mixed                                                                        | English  |
| Bioinfo-Bench-QA [49]<br>BLURB [113]<br>PubMedQA [151]<br>SciBench [345]<br>ARC [64]<br>SciQ [152]<br>ChemData [397] | 2023.10<br>2020.07<br>2019.09<br>2023.07<br>2018.03<br>2017.07<br>2024.02 |                                                                                                                                | 150<br>648k<br>273.2k<br>272<br>7.78k<br>13.7k<br>727k | Biology<br>Biology<br>Chemistry<br>Natural Science<br>Natural Science<br>Chemistry | Multiple choice Multiple NLP tasks True or false QA Multiple choice Multiple choice QA | Post-college<br>Mixed<br>College<br>College<br>Pre-college<br>Mixed<br>Mixed | English  |

#### Evaluation Benchmarks

- MMLU: 57 subjects, including STEM humanities, social sciences
- **C-Eval**: 13,948 multi-choice questions spanning 52 diverse disciplines
- AGIEval: 20 qualification exams, e.g., Gaokao and American SAT, law school admission tests
- ScienceQA: 21,208 multimodal multiplechoice questions, involving elementary and high school science curricula
- **Xiezhi**: 249,587 multi-choice questions spanning 516 diverse disciplines from the elementary to graduate entrance tests
- **SciEval**: 18,000 scientific questions across chemistry, physics, and biology
- SciQ: 13,679 science exam questions on subjects like chemistry and biology
- SciBench: 695 problems from textbooks, tailored for college-level problem-solving
- SciAssess: 14,721 questions across 29 tasks in five domains, with paper memorization, comprehension, and analysis

# **Text-Sci-LLM: Evaluation**



#### SciKnowEval

- L1: Studying Extensively (i.e., knowledge coverage): remember and understand concepts
- L2: Enquiring Earnestly (i.e., knowledge enquiry and exploration): deep enquiry and exploration
- L3: Thinking Profoundly (i.e., knowledge reflection and reasoning): reasoning and calculating
- L4: Discerning Clearly (i.e., knowledge discernment and safety assessment): make secure, ethical decisions
- L5: Practicing Assiduously (i.e., knowledge practice and application): apply knowledge in real-world



SciKnowEval: Evaluating Multi-level Scientific Knowledge of Large Language Models, https://arxiv.org/abs/2406.09098, 2024

# **Text-Sci-LLM: Evaluation**



| Domain    | Ability | Task Name                               | Task Type | Data Source              | Method | #Questions |
|-----------|---------|-----------------------------------------|-----------|--------------------------|--------|------------|
|           | L1      | Biological Literature QA                | MCQ       | Literature Corpus        | I      | 14,869     |
|           | Li      | Protein Property Identification         | MCQ       | UniProtKB                | III    | 1,500      |
|           |         | <b>Drug-Drug Relation Extraction</b>    | RE        | Bohrium                  | II     | 464        |
|           |         | Biomedical Judgment and Interpretation  | T/F       | PubMedQA                 | II     | 904        |
|           |         | Compound-Disease Relation Extraction    | RE        | Bohrium                  | II     | 867        |
|           | L2      | Gene-Disease Relation Extraction        | RE        | Bohrium                  | II     | 203        |
|           | LZ      | Detailed Understanding                  | MCQ       | LibreTexts               | I      | 828        |
|           |         | Text Summary                            | GEN       | LibreTexts               | I      | 1,291      |
|           |         | Hypothesis Verification                 | T/F       | LibreTexts               | I      | 619        |
|           |         | Reasoning and Interpretation            | MCQ       | LibreTexts               | I      | 647        |
|           |         | Solubility Prediction                   | MCQ       | PEER, DeepSol            | III    | 20         |
|           |         | $\beta$ -lactamase Activity Prediction  | MCQ       | PEER, Envision           | III    | 209        |
| D: 1      |         | Fluorescence Prediction                 | MCQ       | PEER, Sarkisyan's        | III    | 205        |
| Biology   | L3      | GB1 Fitness Prediction                  | MCQ       | PEER, FLIP               | III    | 201        |
|           |         | Stability Prediction                    | MCQ       | PEER, Rocklin's          | III    | 203        |
|           |         | Protein-Protein Interaction             | MCQ       | STRING, SHS27K, SHS148K  | III    | 205        |
|           |         | Biological Calculation                  | MCQ       | MedMCQA, SciEval, MMLU   | II     | 60         |
|           |         | Biological Harmful QA                   | GEN       | Self-generated           | I      | 29         |
|           | L4      | Proteotoxicity Prediction               | MCQ, T/F  | UniProtKB                | III    | 510        |
|           |         | Biological Laboratory Safety Test       | MCQ, T/F  | LabExam (ZJU)            | II     | 194        |
|           |         | Biological Protocol Procedure Design    | GEN       | Protocol Journal         | I      | 591        |
|           |         | Biological Protocol Reagent Design      | GEN       | Protocol Journal         | I      | 565        |
|           | L5      | Protein Captioning                      | GEN       | UniProtKB                | III    | 937        |
|           | 20      | Protein Design                          | GEN       | UniProtKB                | III    | 860        |
|           |         | Single Cell Analysis                    | GEN       | SHARE-seq                | III    | 300        |
|           | -       | Molecular Name Conversion               | MCO       | PubChem                  | III    | 1,008      |
|           | L1      | Molecular Property Identification       | MCQ, T/F  | MoleculeNet              | III    | 1,625      |
|           | Li      | Chemical Literature QA                  | MCQ, 1/I  | Literature Corpus        | I      | 6,310      |
|           |         | Reaction Mechanism Inference            | MCQ       | LibreTexts               | I      | 269        |
|           |         | Compound Identification and Properties  | MCQ       | LibreTexts               | I      | 497        |
|           |         | *************************************** | RE        | NERRE                    | П      | 821        |
|           | L2      | Doping Extraction                       |           |                          | I      |            |
|           | L2      | Detailed Understanding                  | MCQ       | LibreTexts<br>LibreTexts | I      | 626<br>692 |
|           |         | Text Summary                            | GEN       |                          |        |            |
|           |         | Hypothesis Verification                 | T/F       | LibreTexts               | I      | 544        |
|           |         | Reasoning and Interpretation            | MCQ       | LibreTexts               | I      | 516        |
|           |         | Molar Weight Calculation                | MCQ       | PubChem                  | III    | 1,042      |
| Chemistry |         | Molecular Property Calculation          | MCQ       | MoleculeNet              | II     | 740        |
| -         |         | Molecular Structure Prediction          | MCQ       | PubChem                  | III    | 608        |
|           | L3      | Reaction Prediction                     | MCQ       | USPTO-Mixed              | II     | 1,122      |
|           |         | Retrosynthesis                          | MCQ       | USPTO-50k                | II     | 1,122      |
|           |         | Balancing Chemical Equation             | GEN       | WebQC                    | III    | 535        |
|           |         | Chemical Calculation                    | MCQ       | XieZhi, SciEval, MMLU    | II     | 269        |
|           |         | Chemical Harmful QA                     | GEN       | Proposition-65, ILO      | III    | 454        |
|           | L4      | Molecular Toxicity Prediction           | MCQ, T/F  | Toxric                   | III    | 870        |
|           |         | Chemical Laboratory Safety Test         | MCQ, T/F  | LabExam (ZJU)            | II     | 53         |
|           |         | Molecular Captioning                    | GEN       | ChEBI-20                 | II     | 943        |
|           | L5      | Molecular Generation                    | GEN       | ChEBI-20                 | II     | 897        |
|           | LJ      | Chemical Protocol Procedure Design      | GEN       | Protocol Journal         | I      | 74         |
|           |         | Chemical Protocol Reagent Design        | GEN       | Protocol Journal         | I      | 129        |



## Evaluation Tasks and Dataset Statistics

## Zero-shot performance of LLMs on SciKnowEval



| Models             |             |             | Biol        | ogy   |       |             |             |       | Chen  | nistry      |       |             | Overall |
|--------------------|-------------|-------------|-------------|-------|-------|-------------|-------------|-------|-------|-------------|-------|-------------|---------|
| Models             | L1          | L2          | L3          | L4    | L5    | All         | L1          | L2    | L3    | L4          | L5    | All         | Rank    |
| GPT-4o             | 2.00        | 2.25        | 6.00        | 4.00  | 1.20  | 3.28        | 1.00        | 2.29  | 4.00  | 7.00        | 3.75  | 3.46        | 1       |
| Gemini1.5-Pro      | 4.50        | 5.12        | <u>6.14</u> | 2.67  | 6.60  | 5.36        | <u>2.67</u> | 4.00  | 3.57  | 1.33        | 11.75 | <u>4.67</u> | 2       |
| GPT-4-Turbo        | 4.00        | 5.50        | 7.86        | 3.33  | 4.00  | 5.48        | 3.00        | 1.57  | 7.29  | <u>4.67</u> | 7.75  | 4.83        | 3       |
| Claude3-Sonnet     | 5.50        | <u>4.12</u> | 8.43        | 4.00  | 2.00  | <u>5.00</u> | 6.00        | 4.43  | 7.86  | 8.00        | 6.00  | 6.33        | 4       |
| GPT-3.5-Turbo      | <u>2.50</u> | 7.62        | 11.86       | 4.67  | 7.60  | 8.04        | 9.00        | 7.86  | 8.29  | 7.00        | 8.00  | 8.04        | 5       |
| Llama3-8B-Inst     | 8.50        | 5.50        | 11.71       | 7.67  | 10.80 | 8.80        | 6.00        | 6.29  | 8.57  | 7.33        | 14.25 | 8.38        | 6       |
| Qwen1.5-14B-Chat   | 5.50        | 10.38       | 8.71        | 9.00  | 8.40  | 8.96        | 9.33        | 7.14  | 6.43  | 8.00        | 10.50 | 7.88        | 7       |
| Qwen1.5-7B-Chat    | 9.00        | 10.50       | 13.71       | 8.00  | 10.60 | 11.00       | 10.67       | 9.86  | 9.29  | 11.67       | 13.50 | 10.62       | 10      |
| ChatGLM3-6B        | 12.00       | 14.25       | 11.43       | 10.00 | 12.00 | 12.32       | 15.33       | 15.00 | 15.00 | 12.33       | 12.75 | 14.33       | 12      |
| Gemma1.1-7B-Inst   | 16.00       | 16.75       | 11.71       | 14.67 | 12.80 | 14.24       | 17.00       | 15.86 | 12.57 | 11.00       | 7.25  | 13.00       | 14      |
| Llama2-13B-Chat    | 19.00       | 11.38       | 17.14       | 10.67 | 10.60 | 13.36       | 18.67       | 13.86 | 15.57 | 10.33       | 14.00 | 14.54       | 15      |
| Mistral-7B-Inst    | 11.00       | 13.12       | 14.71       | 12.67 | 18.20 | 14.30       | 14.33       | 14.14 | 15.29 | 7.33        | 19.00 | 14.46       | 16      |
| ChemDFM-13B        | 6.50        | 11.12       | 12.00       | 9.67  | 12.40 | 11.08       | 6.67        | 9.43  | 8.29  | 8.33        | 1.75  | 7.33        | 8       |
| ChemLLM-20B-Chat   | 12.50       | 6.62        | 10.14       | 14.67 | 13.00 | 10.32       | 10.00       | 7.71  | 11.00 | 16.33       | 4.00  | 9.42        | 9       |
| MolInst-Llama3-8B  | 13.50       | 9.88        | 7.86        | 12.00 | 18.20 | 11.52       | 9.33        | 9.57  | 7.43  | 9.33        | 17.75 | 10.25       | 11      |
| Galactica-30B      | 11.00       | 13.75       | 8.43        | 16.67 | 16.80 | 13.00       | 7.67        | 16.43 | 13.00 | 16.67       | 16.00 | 14.29       | 13      |
| SciGLM-6B          | 16.00       | 14.12       | 11.43       | 16.00 | 16.60 | 14.24       | 16.00       | 15.29 | 13.14 | 17.67       | 15.25 | 15.04       | 17      |
| ChemLLM-7B-Chat    | 15.00       | 15.88       | 13.86       | 14.33 | 16.60 | 15.20       | 15.33       | 14.86 | 15.43 | 16.00       | 7.75  | 14.04       | 18      |
| Galactica-6.7B     | 17.50       | 16.50       | 11.86       | 18.00 | 19.20 | 16.00       | 13.00       | 17.86 | 13.00 | 13.00       | 18.50 | 15.33       | 19      |
| LlaSMol-Mistral-7B | 19.50       | 16.75       | 14.14       | 19.67 | 17.20 | 16.68       | 19.33       | 18.71 | 16.29 | 20.00       | 1.25  | 15.33       | 20      |

## **Outline**





**Introduction and Preliminary** 



**Scientific Large Language Models** 

• 2.3 Protein Language



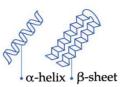
**Challenges and Perspective** 

## **Prot-LLM: Models**





Primary Structure (Amino acid sequence)



Secondary Structure



Teritary Structure



Quaternary Structure

|             | Model                       | Time    | #Parameters | Base model               | Pretraining Dataset            | Capability                                      | Open<br>sourc |
|-------------|-----------------------------|---------|-------------|--------------------------|--------------------------------|-------------------------------------------------|---------------|
|             | ESM-1b [281]                | 2020.02 | 650M        | RoBERTa                  | UniRef50                       | Secondary struct. pred.,<br>Contact pred., etc. | ✓             |
|             | ESM-MSA-1b [277]            | 2021.02 | 100M        | ESM-1b                   | UniRef50                       | Secondary struct. pred.,<br>Contact pred., etc. | ✓             |
|             | ESM-1v [238]                | 2021.02 | 650M        | ESM-1b                   | UniRef90                       | Mutation effect pred.                           | <b>✓</b>      |
|             | ProtTrans [87]              | 2021.07 | -           | BERT, Albert,<br>Electra | UniRef, BFD                    | Secondary struct. pred.,<br>Func. pred., etc    | ✓             |
|             | PMLM [122]                  | 2021.07 | 87M - 731M  | Trans. enc.              | Uniref50/Pfam                  | Contact pred.                                   | ×             |
|             | Mansoor et al. [229]        | 2021.09 | 100M        | ESM-1b                   | -                              | Mutation effect pred.                           | ×             |
|             | ProteinBERT [32]            | 2022.02 | 16M         | BERT                     | UniRef90                       | Func. pred.                                     | ✓             |
|             | LM-GVP [351]                | 2022.04 | -           | Trans. enc               | -                              | Func. pred.                                     | <b>✓</b>      |
| ncoder-only | RSA [225]                   | 2022.05 | -           | ESM-1b                   | -                              | Func. pred.                                     | ✓             |
|             | OntoProtein [403]           | 2022.06 | -           | BERT                     | ProteinKG25                    | Func. pred.                                     | ✓             |
|             | ESM-2 [195]                 | 2022.07 | 8M - 15B    | RoBERTa                  | UniRef50                       | Func. pred., Struct. pred.                      | ✓             |
|             | PromptProtein [354]         | 2023.02 | 650M        | RoBERTa                  | UniRef50, PDB                  | Func. pred.                                     | ✓             |
|             | KeAP [428]                  | 2023.02 | -           | RoBERTa                  | ProteinKG25                    | Func. pred.                                     | ✓             |
|             | ProtFlash [339]             | 2023.10 | 79M/174M    | Trans. enc               | UniRef50                       | Func. pred.                                     | <b>✓</b>      |
|             | ESM-GearNet [416]           | 2023.10 | -           | ESM-1b, GearNet          | -                              | Func. pred.                                     | ✓             |
|             | SaProt [312]                | 2023.10 | 650M        | BERT                     | -                              | Mutation effect pred.                           | ✓             |
|             | ProteinNPT [248]            | 2023.12 | -           | Trans. enc.              | -                              | Fitness pred., Redesign                         | ×             |
|             | Outeiral et al. [254]       | 2024.02 | 10M - 5B    | Trans. enc.              | European Nucleotide<br>Archive | Protein represent learning                      | ✓             |
|             | ESM All-Atom [422]          | 2024.06 | 35M         | RoBERTa                  | AlphaFold DB                   | Unified Molecular Modeling                      | ×             |
|             | KnowRLM [349]               | 2024.06 | -           | Trans. enc.              | • -                            | Protein Directed Evolution                      | ×             |
|             | ESM3 [121]                  | 2024.06 | 98B         | RoBERTa                  | PDB                            | Seq. pred., Func. pred., Struct. pred.          | ✓             |
|             | ProGen [226]                | 2020.03 | 1.2B        | GPT                      | Uniparc<br>SWISS-Prot          | Functional prot. gen.                           | ✓             |
|             | ProtGPT2 [99]               | 2021.01 | 738M        | GPT                      | Uniref50                       | De novo protein design<br>and engineering       | ✓             |
|             | ZymCTRL [241]               | 2022.01 | 738M        | GPT                      | BRENDA                         | Functional enzymes gen.                         | /             |
| ecoder-only | RITA [128]                  | 2022.05 | 1.2B        | GPT                      | UniRef100                      | Functional prot. gen.                           | ×             |
| ,           | IgLM [302]                  | 2022.12 | 13M         | GPT                      | -                              | Antibody design                                 | /             |
|             | ProGen2 [245]               | 2023.10 |             | GPT                      | Uniref90,<br>BFD30, PDB        | Functional prot. gen.                           | ✓             |
|             | ProteinRL [309]             | 2023.10 | 764M        | GPT                      | -                              | Prot. design                                    | ×             |
|             | PoET [9]                    | 2023.11 | 201M        | GPT                      | -                              | Prot. family. gen.                              | ×             |
|             | C. Frey <i>et al.</i> [104] |         | 9.87M/1.03M | GPT                      | hu4D5 antibody<br>mutant       | Functional prot. gen.                           | ×             |

#### ❖ Protein LLMs

- Protein vocabulary: 20 amino acids in nature, special tokens like <BOS> and <EOS>
- Architectures: BERT, RoBERTa, GPT, GLM, T5, Transformer
- **Sizes**: 100M, 1B, 10B, 100B
- Datasets: Uniref, Pfam, SwissProt, PDB, BFD30, AlphaFoldDB, ColdFoldDB
- Tasks: function prediction, family prediction, protein-protein interaction, contact prediction, mutation effect prediction, structure prediction, sequence optimization, protein de novo design, inverse folding

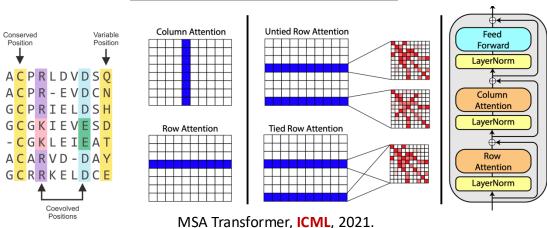
|                 | Fold2Seq [40]                | 2021.01 | -     | Transformer     | -                          | Prot. design                    | ✓ |
|-----------------|------------------------------|---------|-------|-----------------|----------------------------|---------------------------------|---|
|                 | MSA2Prot [273]               | 2022.04 | -     | Transformer     | -                          | Prot. gen., Variant func. pred. | × |
|                 | Sgarbossa et al. [295]       | 2023.02 | -     | MSA Transformer | -                          | Prot. gen.                      | ✓ |
|                 | Lee et al. [178]             | 2023.02 | 150M  | Transformer     | -                          | Prot. design                    | × |
| Encoder-Decoder | LM-Design [424]              | 2023.02 | 664M  | Transformer     | -                          | Prot. design                    | ✓ |
| Encoder-Decoder | MSA-Augmenter [402]          | 2023.06 | 260M  | Transformer     | Uniref50                   | MSA gen.                        | ✓ |
|                 | ProstT5 [125]                | 2023.07 | 3B    | T5              | PDB                        | Seqstruct. translation          | ✓ |
|                 | xTrimoPGLM [44]              | 2023.07 | 100B  | GLM             | Uniref90,<br>ColdFoldDB    | Prot. gen., Func. pred.         | × |
|                 | SS-pLM [294]                 | 2023.08 | 14.8M | Transformer     | Uniref50                   | Prot. gen.                      | × |
|                 | pAbT5 [62]                   | 2023.10 | -     | T5              | -                          | Prot. design                    | × |
|                 | ESM-GearNet-<br>INR-MC [179] | 2024.04 | -     | Transformer     | Swiss-Prot,<br>AlphaFoldDB | Prot. gen                       | × |
|                 |                              |         |       |                 |                            |                                 |   |

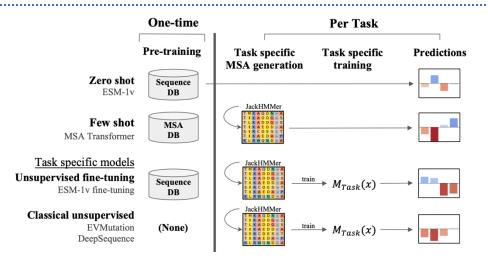
(Continued)

# **Prot-LLM: Encoder-only**

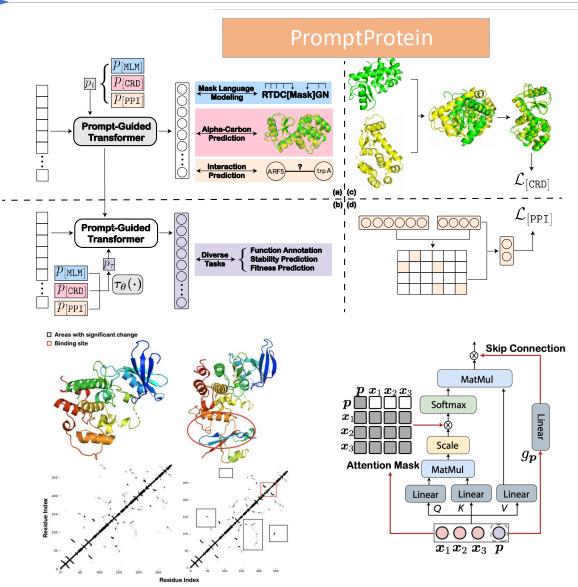


## ESM series





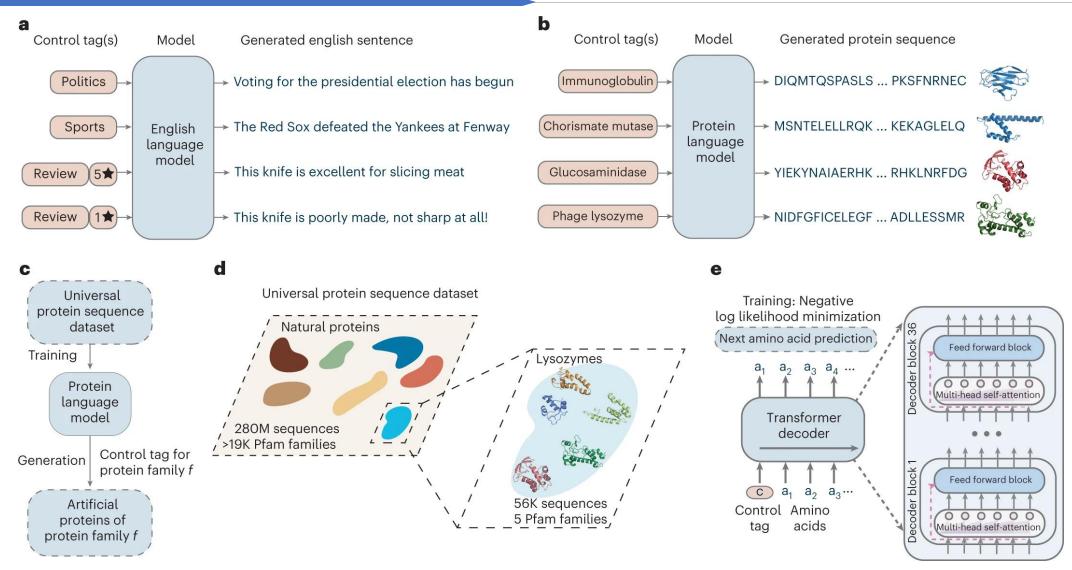
Language models enable zero-shot prediction of the effects of mutations on protein function, <a href="https://www.biorxiv.org/content/10.1101/2021.07.09.450648v2">www.biorxiv.org/content/10.1101/2021.07.09.450648v2</a>, 2021



Multi-level Protein Structure Pre-training with Prompt Learning, ICLR, 2022

# **Prot-LLM: Decoder-only**





ProGen: Large language models generate functional protein sequences across diverse families, Nature Biotechnology, 2023

## **Prot-LLM: Encoder-decoder**



**Protein Generation Tasks** 

#### **Protein Understanding Tasks**

#### De-novo Protein Sequence Design 3D Structure Prediction **Projection Module** 3csl A (ID: 13.9%) (Residue- OR TMscore=0.81 Sequence-level) Contact Map Prediction Pooling xTrimoPGLM G E V[E]**Fold Prediction xTrimoPGLM** ATGEV **Fitness Prediction Optimal PH Prediction** AT [gMASK][S] GEV **xTrimoPGLM** Partial Protein Sequence Design $x_3$ $x_6$ [E] Antibody CDR Re-design (368.04.B.0106) $\times L$ $\mathbf{E} \mathbf{T} \mathbf{E}$ $x_6$ **xTrimoPGLM** Suffix **Prefix** T G[sMASK]V[S]ETContext [MASK] [sMASK] [gMASK]

# **Prot-LLM: Datasets**



Table 6. Summary of datasets for Prot-LLMs

|             | Dataset                                                                                                                        | Last updated                                                                                                          | Scale                                                                                            | Keywords                                                                                                                                                                                                                                                                                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | UniRef100 [315, 316]<br>UniRef90 [315, 316]<br>UniRef50 [315, 316]                                                             | 2023.11                                                                                                               | 314M<br>150M<br>53M                                                                              | Complete collection of protein sequences from UniProtKB<br>Cluster UniRef100 sequences at 90% sequence identity level<br>Cluster UniRef100 sequences at 50% sequence identity level                                                                                                                     |
| Pretraining | UniProtKB/Swiss-Prot [29]<br>UniProtKB/TrEMBL [240]                                                                            | 2023.11                                                                                                               | 570K<br>251M                                                                                     | High-quality, manually curated protein sequence database<br>Computationally annotated protein sequence database                                                                                                                                                                                         |
|             | UniParc [69]<br>Pfam [100]                                                                                                     | 2023.11<br>2023.09                                                                                                    | 632M<br>47M                                                                                      | Comprehensive and non-redundant protein sequence database Protein family database                                                                                                                                                                                                                       |
|             | BFD [157, 306, 307]<br>PDB [364]<br>AlphaFoldDB [157, 334]                                                                     | 2021.07<br>2023.12<br>2021.11                                                                                         | 2.5B<br>214K<br>200M                                                                             | Protein sequences from multiple databases and resources<br>Experimentally determined accurate protein structures<br>Protein structures predicted by AlphaFold                                                                                                                                           |
| Benchmark   | CASP [171] EC [236] GO [8] CATH [252] HIPPIE [288] SCOP [214] ProteinGym [247] FLIP [75] PEER [377]  TAPE [276] Reactome [144] | 2022.01<br>2023.11<br>2023.11<br>2023.02<br>2022.04<br>2023.01<br>2022.12<br>2022.01<br>2022.11<br>2021.09<br>2023.12 | 2.6 M<br>1.5M<br>151M<br>39K<br>914K<br>~ 300K<br>~ 320K<br>~ 390K<br>~ 390K<br>~ 390K<br>~ 390K | Fitness landscape prediction (AAV, Thermostability, GB1) Protein function, Localization, Structure prediction, Protein-protein interaction, Protein-ligand interaction Remote homology detection, Secondary structure, Contact, Fluorescence, Stability prediction Biological interactions and pathways |
|             | STRING [317]<br>BioGRID [253]<br>InterPro [258]                                                                                | 2022.11<br>2023.12<br>2024.01                                                                                         | 59.3M<br>271k<br>~ 41k                                                                           | Protein-Protein interaction networks Genetic and protein interactions Classification of protein families                                                                                                                                                                                                |

# **Prot-LLM: Evaluation**



#### **Evaluation Metric**

- Novelty: the fraction of the generated proteins that are not present in the training set
- Frechet Protein Distance: the similarity between a set of generated proteins (G) and a reference set (R)

$$FPD = ||\mu_G - \mu_R||^2 + Tr(\Sigma_G + \Sigma_R - 2\sqrt{\Sigma_G \Sigma_R})$$

- **Diversity**: analyzing the variety of the generated proteins against known protein databases with BLAST, metrics such as sequence similarity, percentage of unique sequences, and alignment scores
- **Foldability**: the average per-residue confidence score, denoted as **pLDDT**, across the entire protein sequence, being an indicator of the model's confidence in its predictions for individual residues
- Recovery: the success or accuracy in predicting the correct amino acid sequence that corresponds to a
  given 3D structure. A high recovery rate indicates that the designed sequences are likely to fold the desired
  structures.

## **Outline**





**Introduction and Preliminary** 



Scientific Large Language Models



**Challenges and Perspective** 

# **Sci-LLM: Summary**



#### Scientific Symbols & Language

#### SMILES: OC(=O)C1=CC=CC=C1O [O][C][=Branch1][C][=O][C] Molecule SELFIES: [=C][C][=C][C][=C][Ring1] [=Branch1][O] 1S/C7H6O3/c8-6-4-2-1-3-2D Topology 5(6)7(9)10/h1-4,8H,(H,9,10) Structure Structure **Protein** VDSPOERASLDEN... α-helix β-sheet Primary Structure Secondary Teritary Quaternary (Amino acid sequence) Structure Structure Structure

ATCGGTGACTATCG



Textual LLMs (Natural language-centric)

Ø Bio. & Chem. Knowledge

What is the mitochondria?



Multimodal

Molecular LLMs (Molecular language-centric)

Ø Molecule Sequence N=C(N)NCC[C@H](N)C...

Protein LLMs (Protein language-centric)

Ø Protein Sequence RASLDVETNSPPOENE...



Genomic LLMs (Genomic language-centric)

Ø Genome Sequence GAAGTCACGGCGTA...



#### Perspective

#### • Training Data:

RNA Sequence: AUCGGUGACUAUCG

DNA Sequence:

Genome

Scale of Pre-training Datasets

MMM

Double-stranded

DNA Structure

Single-stranded

RNA Structure

- Quality of Finetuning Datasets
- Lack of Cross-modal Datasets
- Model Evaluation:
  - Computational vs wet-lab

#### Architectures and Learning Objectives:

- Handling Longer Sequences
- Incorporating 3D Structural Information
- Autoregressive Learning Objective
- Security and Ethics:
  - Data Privacy, Model Bias, Equal Access

## **Relevant Materials**



- Accompanying survey of this tutorial:
  - Scientific Large Language Models: A Survey on Biological & Chemical Domains, https://arxiv.org/pdf/2401.14656
  - Github Repository: <a href="https://github.com/HICAI-ZJU/Scientific-LLM-Survey">https://github.com/HICAI-ZJU/Scientific-LLM-Survey</a>
- Surveys for related topics:
  - o Comprehensive
    - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems, https://arxiv.org/pdf/2307.08423
    - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery, https://arxiv.org/abs/2406.10833
  - Chemical molecules
    - MolGenSurvey: A systematic survey in machine learning models for molecule design, https://arxiv.org/abs/2203.14500
    - A Systematic Survey of Chemical Pre-trained Models, <a href="https://www.ijcai.org/proceedings/2023/0760.pdf">https://www.ijcai.org/proceedings/2023/0760.pdf</a>
  - Biological proteins
    - Learning the protein language: Evolution, structure, and function, https://www.cell.com/cell-systems/pdf/S2405-4712(21)00203-9.pdf
    - Protein language models and structure prediction: Connection and progression, https://arxiv.org/pdf/2211.16742
    - Learning functional properties of proteins with language models, https://www.nature.com/articles/s42256-022-00457-9





# **Thank You!**

Dr. Qiang Zhang

qiang.zhang.cs@zju.edu.cn



# Part III: Integrating KGs and LLMs for Scientific Applications

Zaiqiao Meng zaiqiao.meng@glasgow.ac.uk

Tutorial at Learning on Graph Conference (LoG) 26th November, 2024



## **About Me**



Dr. Zaiqiao Meng

https://mengzaiqiao.github.io/



https://www.ai4biomed.org

- ➤ UK Lecturer (Assistant Professor) at the School of Computing Science,
   University of Glasgow (2022.01 now)
- ➤ Postdoctoral Researcher at the Language Technology Lab (LTL) of the University of Cambridge (2020.07 2022.01)
- ➤ Postdoctoral Researcher at the IR Group of the **University of Glasgow** (2019.03 2020.07)
- > Ph.D. degree in Computer Science from **Sun Yat-sen University** (2018)



- Al for BioMedicine
- Information Retrieval
- Knowledge Graphs
- Large Language Models
- LLM-based Agents
- Al for Scientific Discovery







## **Outline**



**Knowledge Incorporation Frameworks** 



**KG** Integration for Scientific NLP Tasks



**KG** Integration for Scientific Prediction Tasks

## **Outline**



**Knowledge Incorporation Frameworks** 



**KG** Integration for Scientific NLP Tasks



**KG Integration for Scientific Prediction Tasks** 

# KG-enhanced LLMs

#### Knowledge Graphs (KGs)

#### Cons:

- Implicit Knowledge
- Hallucination
- Indecisiveness
- Black-box
- Lacking Domainspecific/New Knowledge

#### Pros:

- Structural Knowledge
- Accuracy
- Decisiveness
- Interpretability
- · Domain-specific Knowledge
- Evolving Knowledge

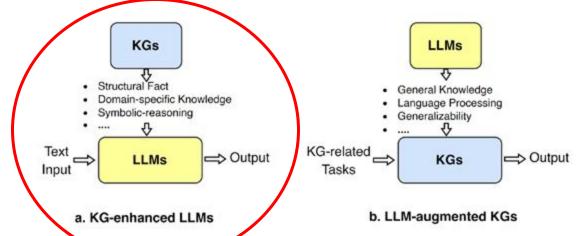
#### Pros:

- General Knowledge
- Language Processing
- Generalizability

#### Cons:

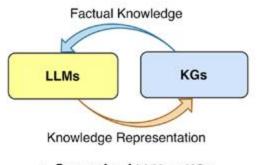
- Incompleteness
- Lacking Language Understanding
- Unseen Facts

#### Large Language Models (LLMs)



**KG-enhanced LLMs,** which incorporate KGs during different phases of LLMs, or for the purpose of enhancing understanding of the knowledge learned by LLMs;

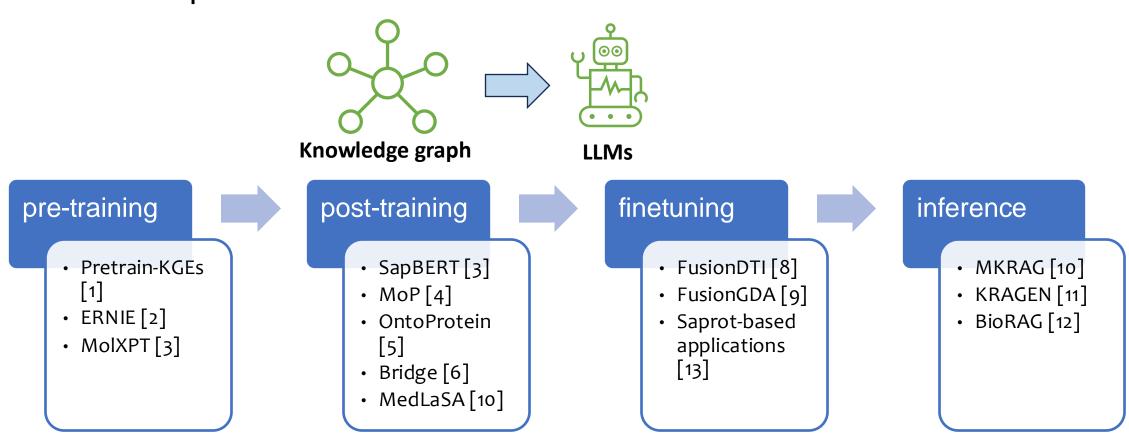
- Knowledge aware pretraining
- Knowledge integration finetuning
- Knowledge editing
- Knowledge unlearning



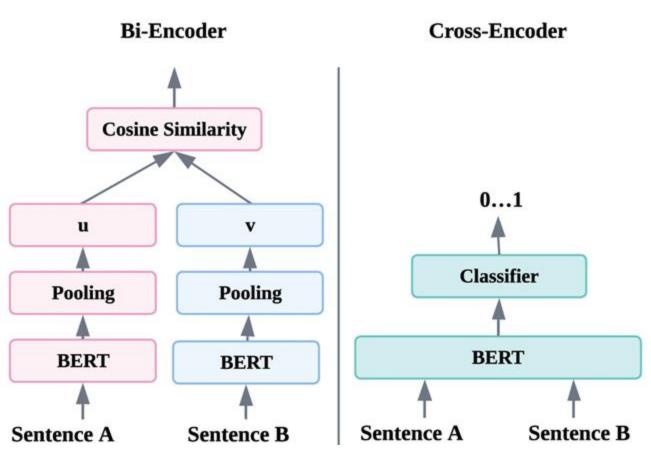
c. Synergized LLMs + KGs

# Categorization over different stages

Integrating scientific knowledge can occur at any stage in the development of LLMs



# Bi-Encoder vs. Cross-Encoder



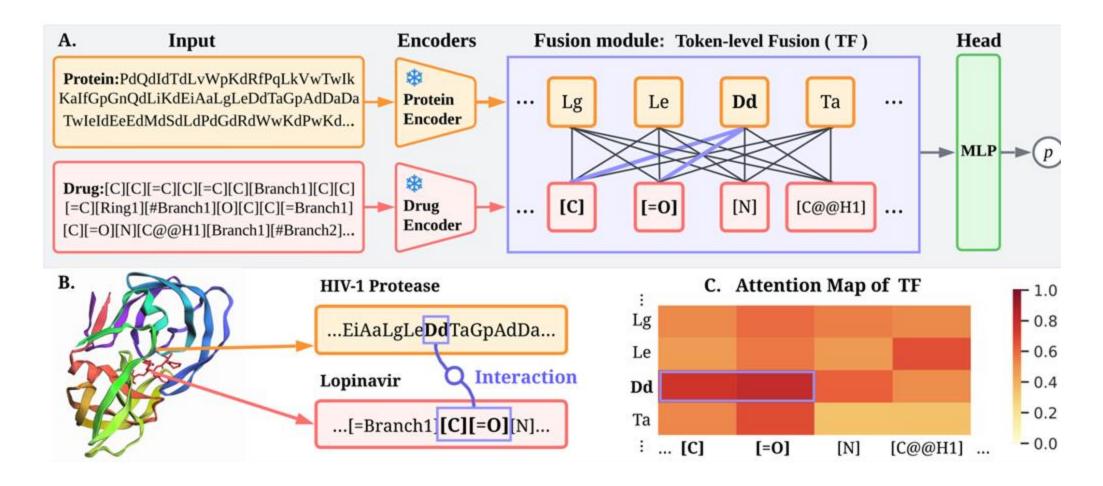
**Bi-Encoder:** Efficient encoding of individual entities can speed up retrieval and computation, but may sacrifice finer-grained interactions between different encoders.

High efficiency.

**Cross-Encoder:** Encodes entities jointly, capturing more detailed interactions, but at the cost of greater computational resources and time.

High effectiveness.

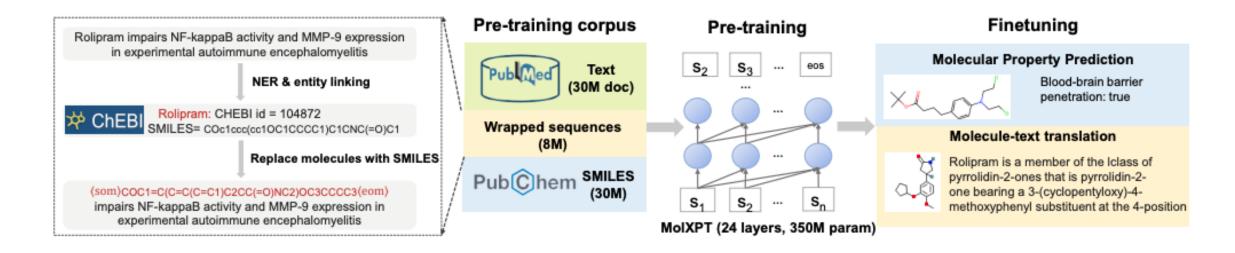
# Bi-Encoder for Drug-Target Prediction



**FusionDTI** uses a token-level fusion module to effectively learn fine-grained information for drug-target interaction.

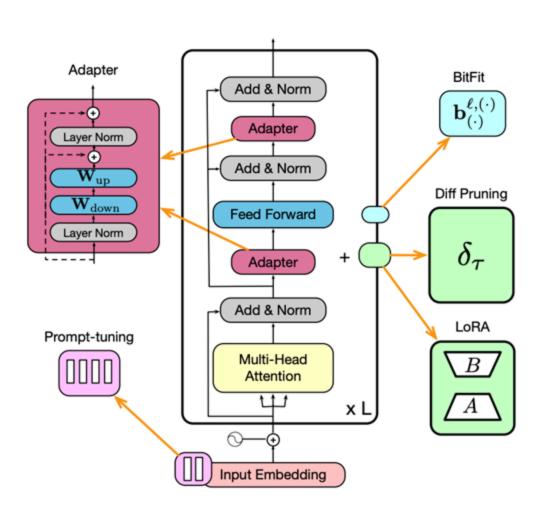
# Cross-Encoder for molecular property prediction

## MolXPT: Wrapping Molecules with Text for Generative Pre-training



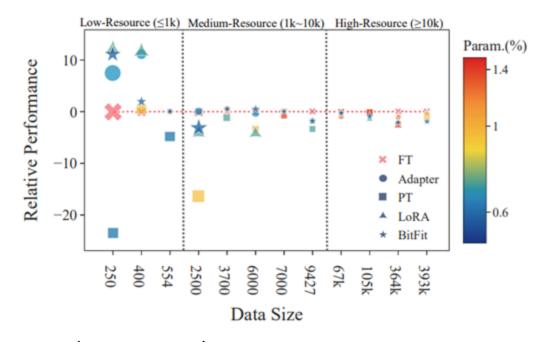
- A unified language model of text and molecules pre-trained on SMILES (a sequence representation of molecules) wrapped by text
- Text and SMILES are tokenized separately (molecular are encoded)

# Integration Techniques of LLMs



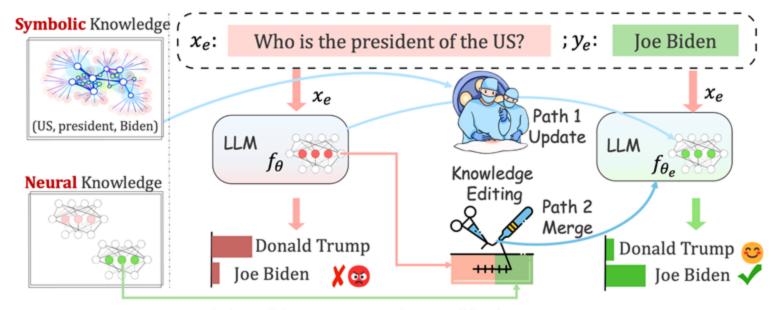
#### **Parameter-Efficient Fine-Tuning (PEFT):**

Techniques like Adapters, Prefix Tuning, LoRA, Diff Pruning, BitFit or Prompt-tuning that fine-tune only a small subset of model parameters, reducing computational costs while maintaining performance.



Revisiting Parameter-Efficient Tuning: Are We Really There Yet? (EMNLP 2022) Link

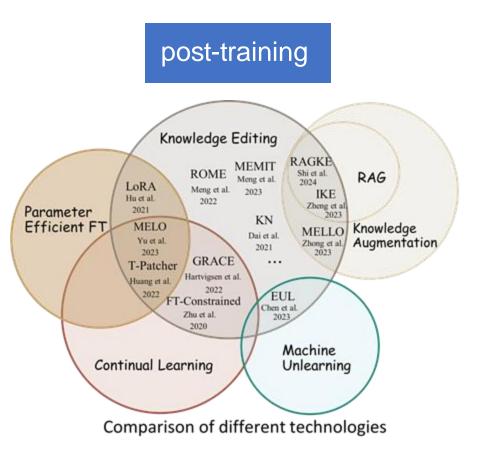
# Knowledge Editing



Knowledge Editing Types: Insertion Modification Erasure

LLMs notoriously hallucinate, perpetuate bias, and factually decay, so we should be able to adjust specific behaviors of pre-trained models.

Easyedit: An easy-to-use knowledge editing framework for large language models: https://github.com/zjunlp/EasyEdit



## **Outline**



**Knowledge Incorporation Frameworks** 

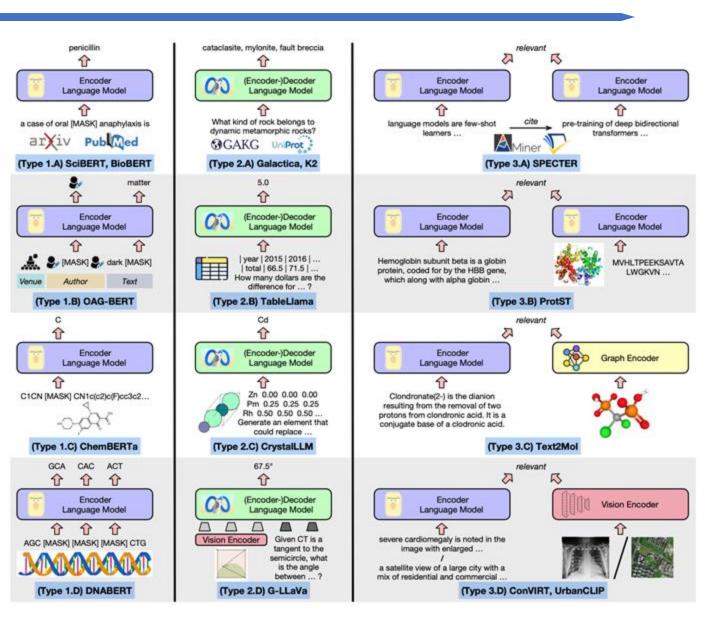


**KG Integration for Scientific NLP Tasks** 



**KG Integration for Scientific Prediction Tasks** 

## KG Integration for Scientific NLP Tasks



- Question Answering [5]
- Entity Linking [4]
- Document Classification [5]
- Summarisation/Note Generation [14]
- Hypothesis Generation [15]
- Knowledge Graph Construction and Completion [1]
- Reasoning [12, 15]

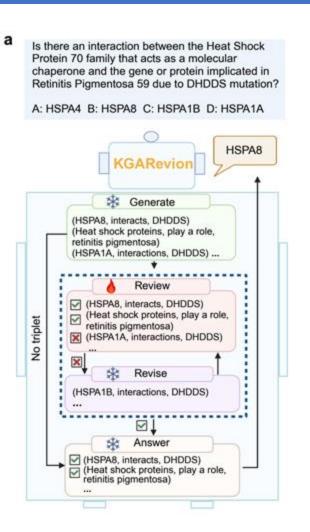
## KG Integration for Clinical Text Data Generation

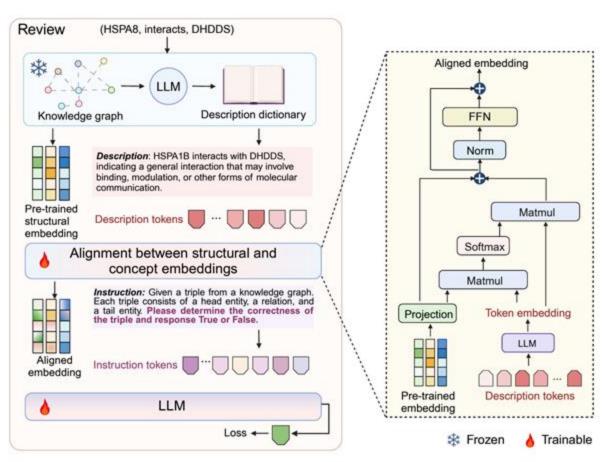
#### **Clinical Text Data Generation** fine-tune 1. Clinical Knowledge 2. Knowledge-Infused Data Generation 3. Language Extraction Model Prompt Fine-Tuning Suppose you need to create a dataset for disease recognition. Your task **Topics From KG** is to: 1. Generate a sentence about disease. Stroke, Covid-19, ... Output a list of named entity about disease only. Pretrained 3. The sentence should mention the disease named (Stroke). Model 4. The sentence should mimic the style of {medical literature}. Some examples are: **Topics From LLM** Sentence: "The development of tolerance to the muscular rigidity Diabetes, Gout, ... produced by morphine was studied in rats." Disease: [muscular rigidity] Synthetic Data Styles From LLM **Synthetic Data** Sentence: "Elevated levels of cholesterol in the blood are associated Fine-Tuned Medical literature, with an increased risk of cardiovascular diseases such as stroke and Clinical reports, heart attack." Disease: [cardiovascular diseases, stroke, heart attack] (a) HOC (b) MEDIQA-RQE

**CLINGEN** is a knowledge-informed framework for clinical data generation. This two-step methodology harnesses the emergent capabilities of LLMs and external knowledge from KGs to facilitate the synthesis of clinical data, even with few-shot examples only.

Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models. (ACL 2024) Link

# KG Integration for QA Tasks





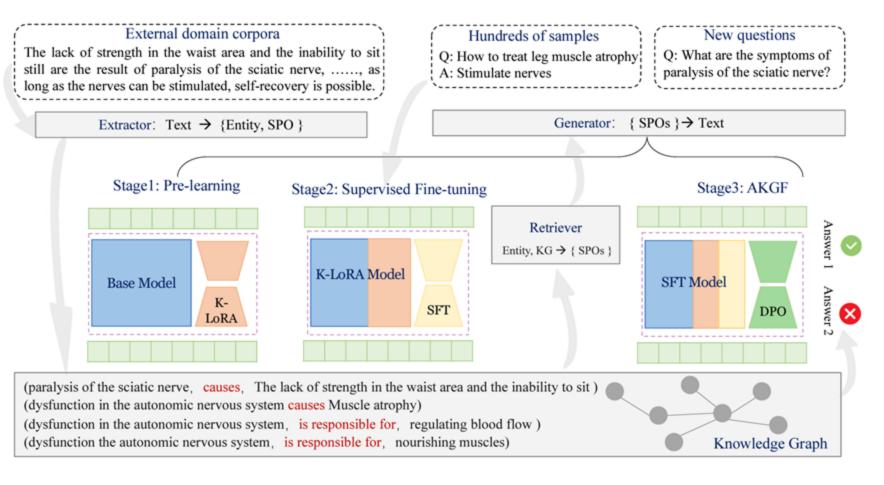
Question Answering (QA)
KG: Heterogeneous
(primeKG)

KGAREVION a KG-based LLM agent for complex medical QA that leverages non-codified knowledge of LLMs and structured, codified knowledge of medical concepts within KGs.



Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine. (2024) Link

# KG Integration for QA Tasks



#### **Question Answering (QA)**

The Enhanced LLM with Knowledge Pre-learning and Feedback (ELPF) framework can be divided into four main stages.

- 1) Efficient construction of domain KGs
- 2) Pre-learning with K-LoRA
- 3) SFT with KG retrieval
- 4) AKGF: KG acts as an evaluator

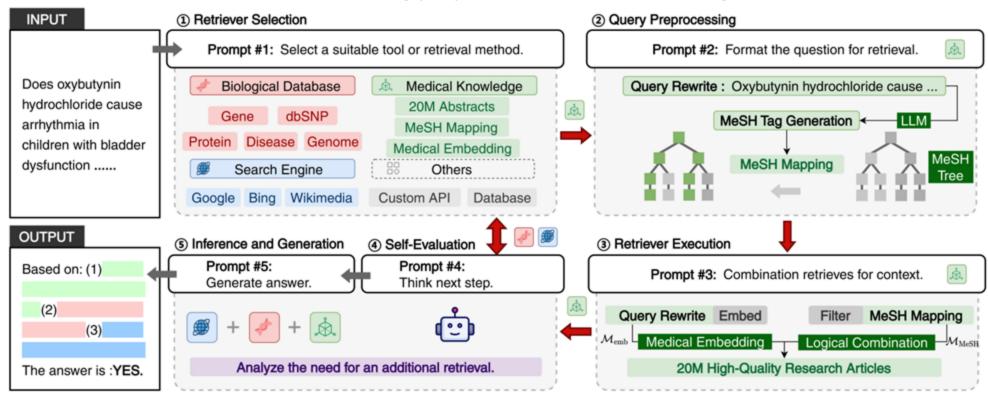
post-train+fine-tune



Efficient Knowledge Infusion via KG-LLM Alignment. (ACL 2024) Link

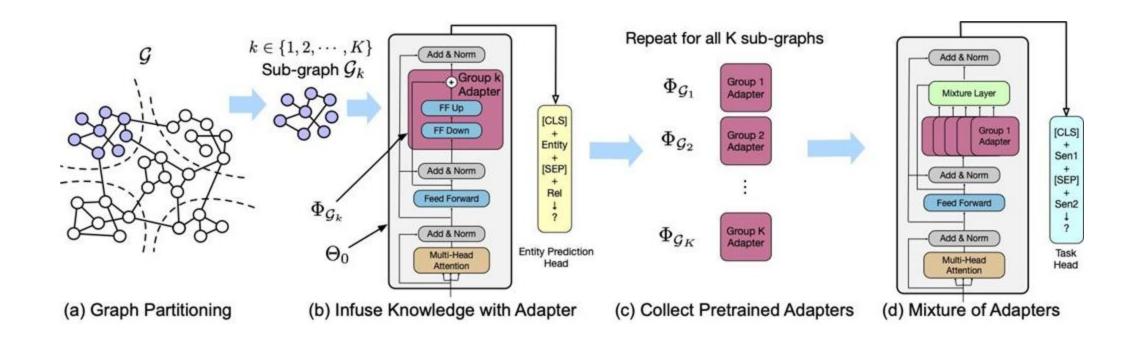
# RAG for Biological Question Reasoning

 BIORAG adaptively select knowledge source and domain-specific tools to advance the biology question-reasoning task.





# Dealing with large scale knowledge graphs



- Partitioning it into smaller sub-graphs, e.g. METIS
- Infusing their specific knowledge into LLMs using lightweight adapters

adapter \*

#### **Outline**



**Knowledge Incorporation Frameworks** 

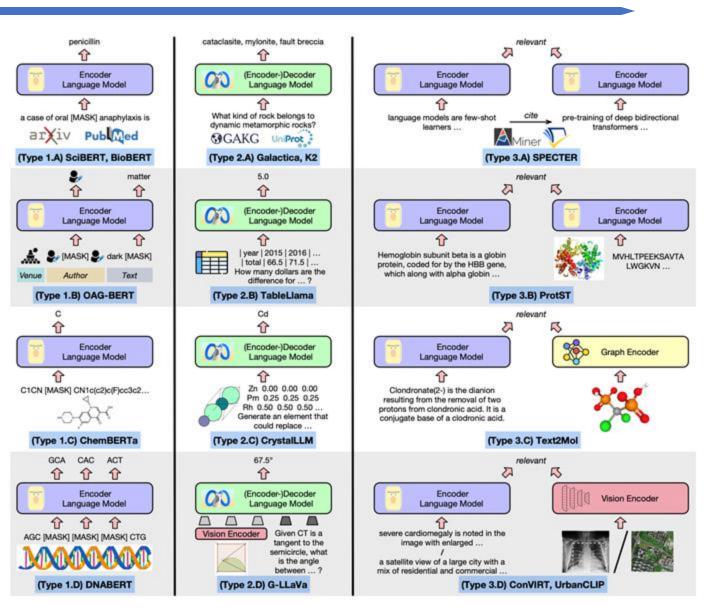


**KG Integration for Scientific NLP Tasks** 



**KG Integration for Scientific Prediction Tasks** 

## KG Integration for Scientific Prediction Tasks



Gene-Disease Association (GDA) [19]
Protein Function Prediction [18]
Drug Repurposing [18]

**Drug-Target Interaction (DTI)** [8,17]

Text2Mol [3]

Amino acid contact prediction

•••

## Gene-Disease Association (GDA)

#### **Pre-training** Disease Descriptions **Protein Sequences** Alpha-1-B glycoprotein: M S M L V V Adenocarcinoma: A common cancer FLLLWGVT MASK GPVTEA characterized [MASK] thepresence of malignant glandular cells. [MASK], AIFYETQ [MASK] SLWAESE adenocarcinomas are classified [MASK] SLLKPLANVTLTC [MASK] A to the growth pattern (e.g., papillary, HLETPDFQLFKNGVAQEP alveolar) or according to the [MASK] VHLDS [MASK] AIKHQFLLT product (e.g., mucinous, serous) ... GDTQGRYRCRSGLSTG... Text encoder Protein encoder Fusion Module Pooling Pre-training Head (Contrastive Loss Function) Fine-tuning Text encoder Protein encoder Fusion Module Pooling Prediction Head (Classifier)

**FusionGDA** utilises bi-encoder with a fusion module to enrich the gene and disease semantic representations encoded by PLMs.

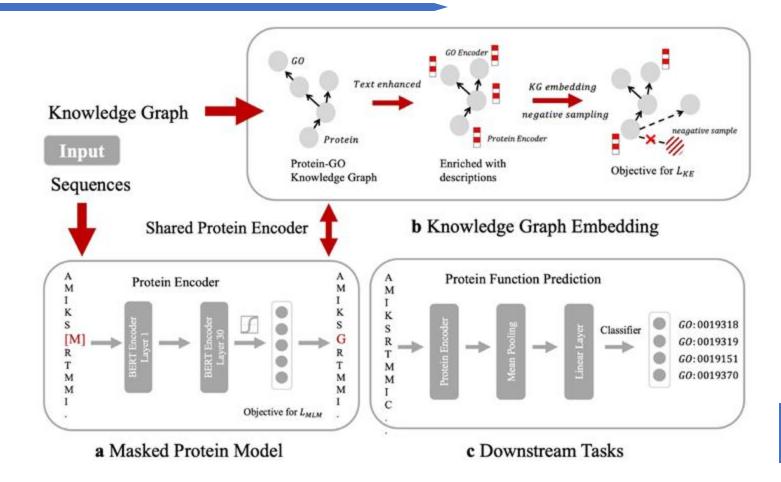
KG: Heterogeneous GDA

Encoder method: Bi-Encoder

post-train + fine-tune

Heterogeneous biomedical entity representation learning for gene–disease association prediction. Briefings in Bioinformatics (2024) <u>Link</u>

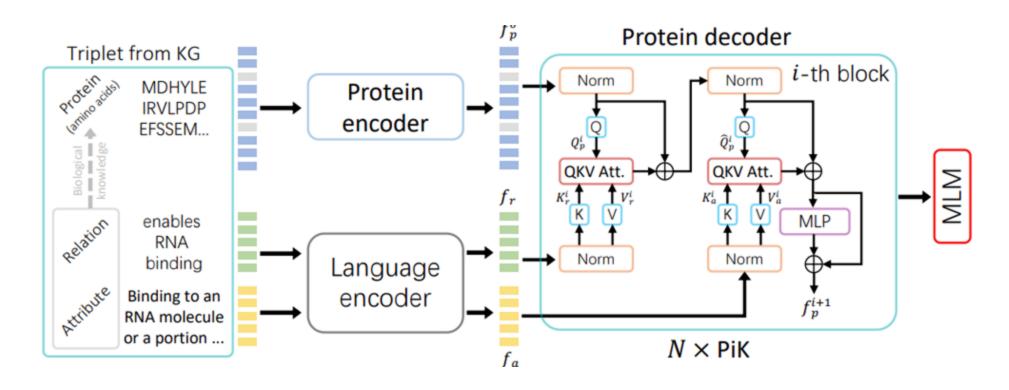
## Protein Function Prediction



post-train + fine-tune

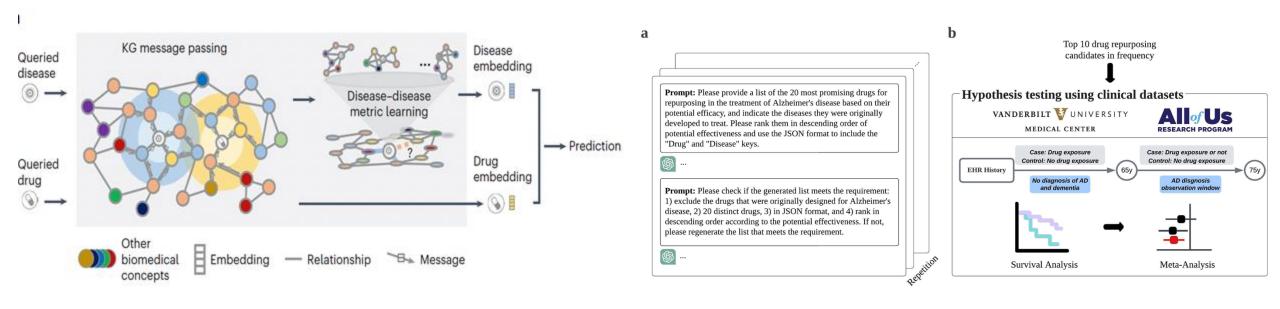
- 1. OntoProtein constructs a novel large-scale knowledge graph that consists of GO (Gene Ontology) and its related proteins, and gene annotation texts or protein sequences describe all nodes in the graph.
- 2. This KG was integrated by a novel contrastive learning with knowledge-aware negative sampling to jointly optimize the knowledge graph and protein embedding during pre-training

## Amino acid contact prediction



- KeAP is trained on a knowledge graph that consists of about five million triplets from ProteinKG25
- KeAP explores knowledge graphs at a more granular level by applying cross-attention to sequences of amino acids and words from relation and attributes.
- KeAP can be trained using the MLM objective only (both contrastive loss and MLM are used in OntoProtein)

## Drug repurposing



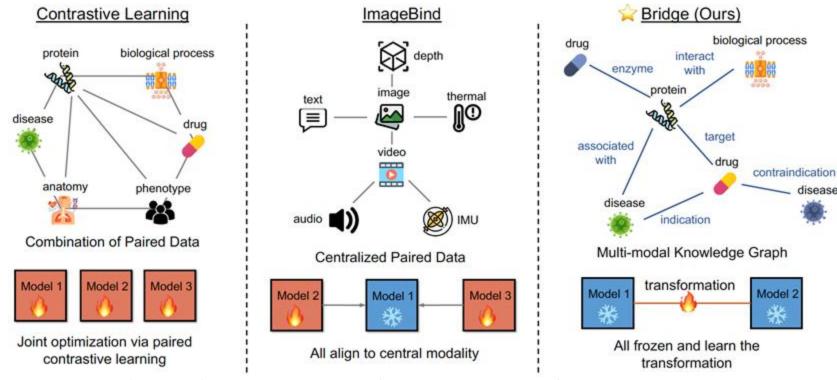
TxGNN, a graph foundation model for zero-shot drug repurposing, identifying therapeutic candidates even for diseases with limited treatment options or no existing drugs. Trained on a medical knowledge graph, TxGNN uses a graph neural network and metric learning module to rank drugs as potential indications and contraindications for 17,080 diseases.

**a** Employing iterative queries of ChatGPT to recommend twenty drugs for AD repurposing.

**b** Evaluating the potential efficacy of the ten most frequently suggested drugs using electronic health records (EHR) data from two large clinical databases.

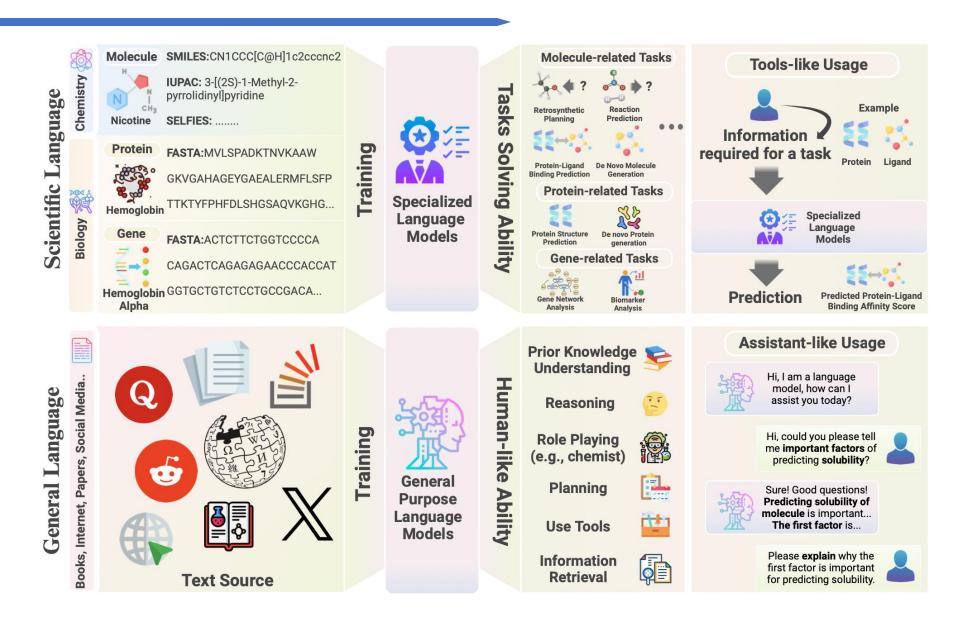
Leveraging generative AI to prioritize drug repurposing candidates for Alzheimer's disease with real-world clinical validation. **Nature**, **2024** 

## The comparison of cross-modality methods

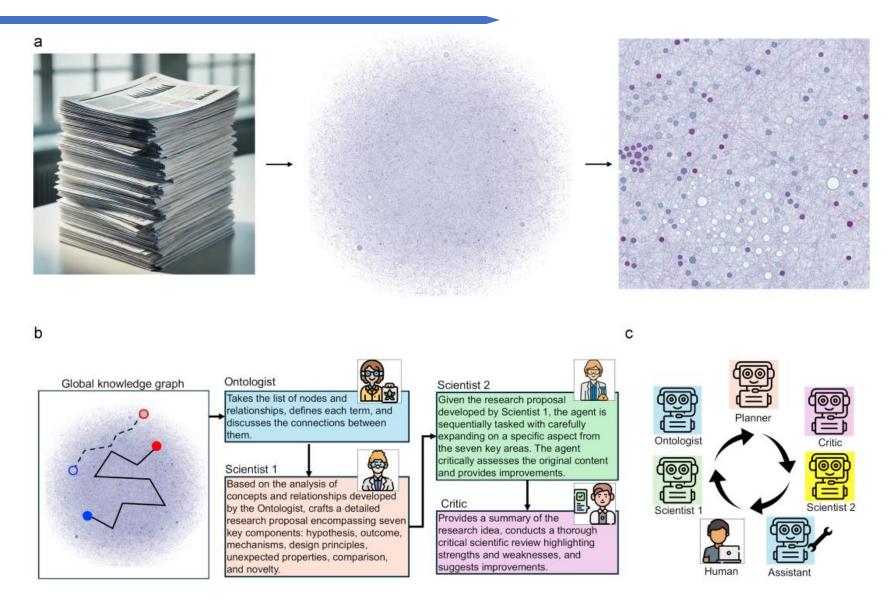


- 1. **Multimodal contrastive learning**, e.g., CLIP, learns from a combination of paired data, updating all unimodal encoders.
- 1. ImageBind aligns all modalities with the central modality, with only the central model frozen.
- 1. **BioBRIDGE** (ICLR 2024) learns the transformation across modalities (Bridge Module) from a multi-modal KG, keeping all FMs frozen.

### Scientific Discovery Agent: Unifying Scientific NLP and Predictions

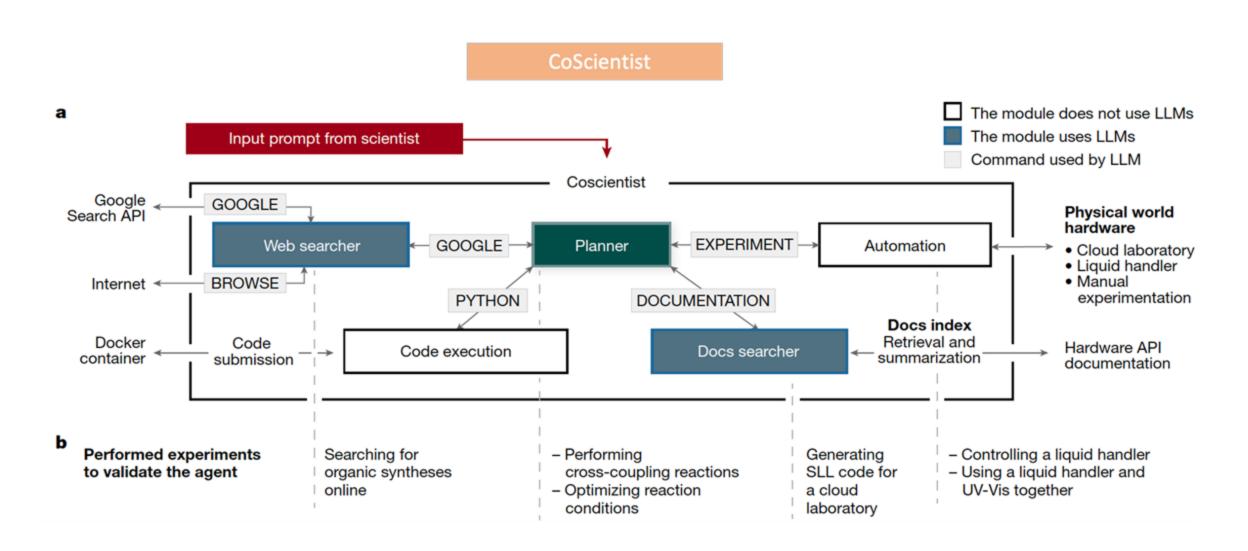


## Multiple Agents with KGs for Scientific Discovery



SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning, <u>link</u>

## Coscientist: Chemistry - Unifying Physical World



## Take-away

### What KG brings to LLMs?

- Enhanced Knowledge Representation
- Improved Explainability, Reasoning and Inference
- Increased Accuracy and Reduced Hallucination

#### How to effectively incorporate KGs into LLMs?

- Backbone Model (protein, molecular, text, visual)
- Encoder Method (bi-encoder, cross-encoder)
- Integration Stages (pretrain, post-train, fine-tune, ICL)
- Integration Techniques (adapter, lora, ICL, RAG, LLM Agent)

## References

- [1] Pretrain-KGEs: Learning Knowledge Representation from Pretrained Models for Knowledge Graph Embeddings, EMNLP 2020
- [2] ERNIE: Enhanced Language Representation with Informative Entities, ACL 2019
- [3] MolXPT: Wrapping Molecules with Text for Generative Pre-training, ACL 2023
- [4] Self-Alignment Pretraining for Biomedical Entity Representations, NAACL 2021
- [5] Mixture-of-partitions: Infusing large biomedical knowledge graphs into BERT, EMNLP 2021
- [7] BioBRIDGE: Biobridge: Bridging biomedical foundation models via knowledge graph, ICLR 2024
- [8] FusionDTI: Fine-grained Binding Discovery with Token-level Fusion for Drug-Target Interaction, AI4Science 2024
- [9] MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering, AMIA 2024
- [10] Editing Factual Knowledge and Explanatory Ability of Medical Large Language Models CIKM 2024
- [11] KRAGEN: a knowledge graph-enhanced RAG framework for biomedical problem solving using large language models, bioinformatics
- [12] BIORAG: A RAG-LLM Framework for Biological Question Reasoning, Arxiv 2024
- [13] SaprotHub: Making Protein Modeling Accessible to All Biologists
- [14] Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models. (ACL 2024)
- [15] SciAgent: Tool-augmented Language Models for Scientific Reasoning
- [16] Imagebind: One embedding space to bind them all. (CVPR 2023)
- [17] Knowledge Enhanced Representation Learning for Drug Discovery (AAAI 2024). Link
- [18] Ontoprotein: Protein pretraining with gene ontology embedding.(ICLR 2022)
- [19] Heterogeneous biomedical entity representation learning for gene–disease association prediction. Briefings in Bioinformatics (2024) Link
- [20] Leveraging generative AI to prioritize drug repurposing candidates for Alzheimer's disease with real-world clinical validation, Nature

Thank you!
Q&A