

Integrating Knowledge Graphs and Large Language Models for Advancing Scientific Research

Qiang Zhang, Jiaoyan Chen, Zaiqiao Meng

Tutorial at Learning on Graph Conference (LoG) 26th November, 2024

About Me

Dr. Jiaoyan Chen

https://chenjiaoyan.github.io/

- ➤ UK Lecturer (Assistant Professor) at the Department of Computer Science, University of Manchester (2022.11 now)
- Senior researcher at the Department of Computer Science, University of Oxford (part-time: 2022.12 – now; full time: 2017.11-2022.10)
- Ph.D. degree in Computer Science from Zhejiang University (2016)

- Knowledge Graph & Ontology
- Knowledge Representation
- Semantic Web & Semantic Techniques
 - Integration with Machine Learning & Language Models
 - Neural-symbolic Al

Why combine KGs and LLMs?

Knowledge Graphs (KGs)

Cons:

- Implicit Knowledge
- Hallucination
- Indecisiveness
- Black-box
- Lacking Domainspecific/New Knowledge

Pros:

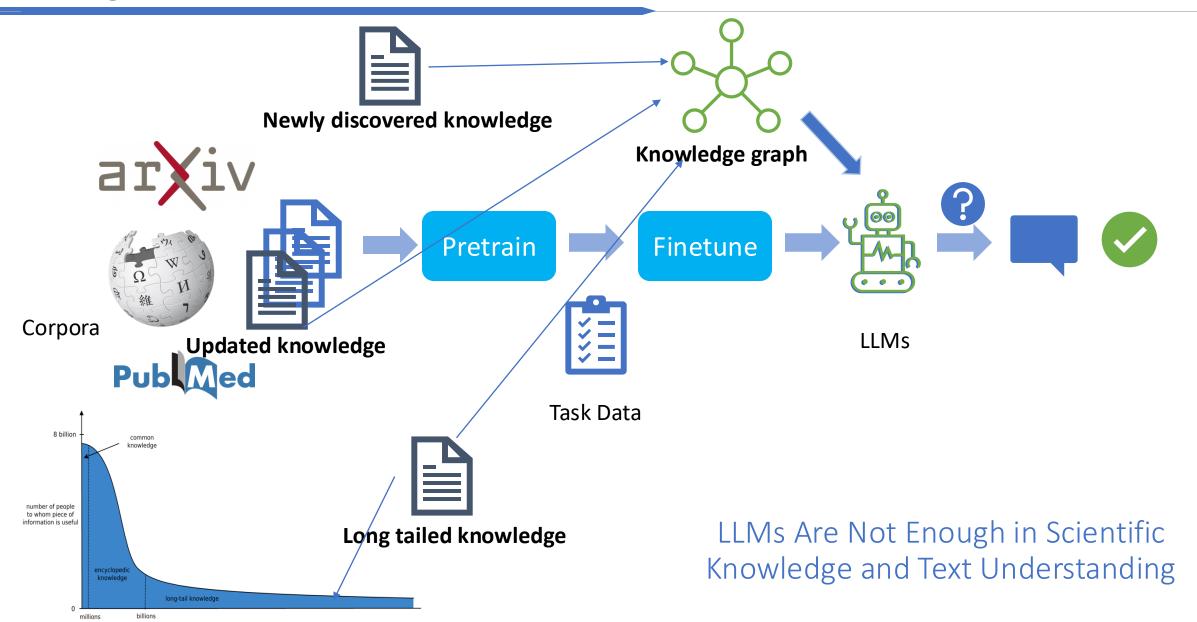
Pros:

- Structural Knowledge
- Accuracy
- Decisiveness
- Interpretability
- Domain-specific Knowledge
- Evolving Knowledge

- General Knowledge
- Language Processing
- Generalizability

Cons:

- Incompleteness
- Lacking Language Understanding
- Unseen Facts


Pan, Shirui, et al. "Unifying large language models and knowledge graphs: A roadmap." *IEEE Transactions on Knowledge and Data Engineering* (2024).

More similar perspectives recently, e.g.,

Pan, Jeff, et al. "Large Language Models and Knowledge Graphs: Opportunities and Challenges." Transactions on Graph Data and Knowledge (2023).

Large Language Models (LLMs)

Why combine KGs and LLMs?

Part I: Knowledge Graphs for Science

Jiaoyan Chen

Tutorial at Learning on Graph Conference (LoG) 26th November, 2024

Outline

KG Definitions and Core Concepts

Ecotoxicological Effect Prediction: A Simple Case

KG for Life Science: Review & Challenges

The Knowledge Graph

- The Knowledge Graph is a knowledge base used by Google and its services to enhance its search engine's results with knowledge gathered from a variety of sources.
 - Proposed around 2012
 - Knowledge ≈ Instances + Facts
 - KG ≈ Linked Structured Data (can be regarded as a multi-relational graph)

Manchester Baby

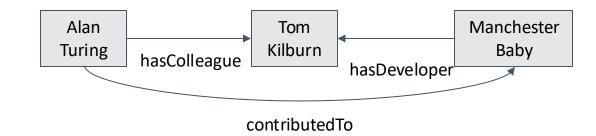
Computer :

The Manchester Baby, also called the Small-Scale Experimental Machine, was the first electronic stored-program computer. It was built at the University of Manchester by Frederic C. Williams, Tom Kilburn, and Geoff Tootill, and ran its first program on 21 June 1948. Wikipedia >

Date introduced: June 21, 1948

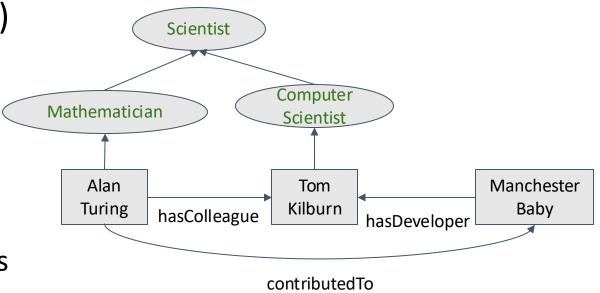
Also known as: Small-Scale Experimental Machine

Developer: Frederic Calland Williams; Tom Kilburn; Geoff


Tootill

Memory: 1 kilobit (1,024 bits)

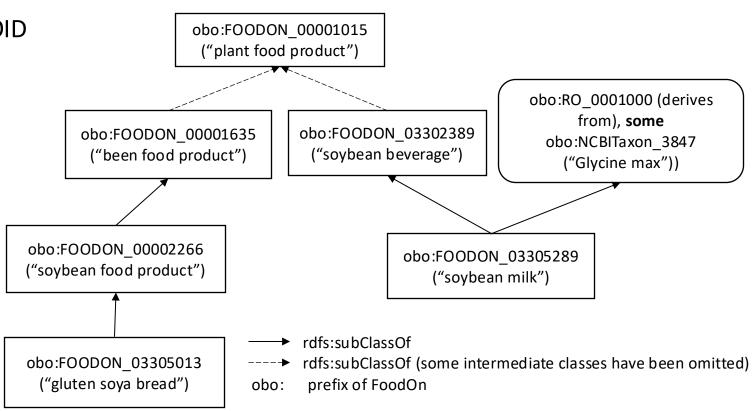
Successor: Manchester Mark 1


A Knowledge Representation Perspective

- RDF (Resource Description Framework)
 - Triple: <Subject, Predicate, Object>
 - Representing facts:
 - E.g., <Manchester Baby, hasDeveloper, Tom Kilburn>

A Knowledge Representation Perspective

- RDF (Resource Description Framework)
 - Triple: <Subject, Predicate, Object>
 - Representing facts:
 - E.g., <Manchester Baby, hasDeveloper, Tom Kilburn>
- RDF Schema
 - Meta data (schema) of instances and facts
 - E.g., class, property domain and range


A Knowledge Representation Perspective

- Web Ontology Language (OWL)
 - Taxonomies and vocabularies
 E.g., FoodOn, SNOMED CT, GO, DOID
 - Constraints and logical relationships (> schema)

Underpinned by **Description Logic** (\sqcap , \sqcup , \exists , \forall , \neg)

E.g., 'food material' ≡ 'environmental material' and ('has role' some 'food')

E.g., the cardinality of "hasParent" is 2

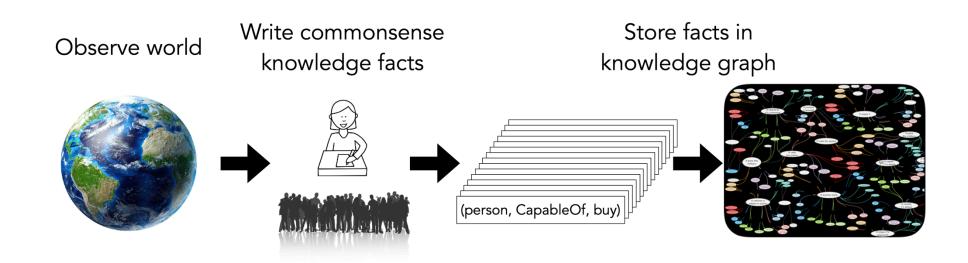
A segment of the food ontology FoodOn

What is a Knowledge Graph?

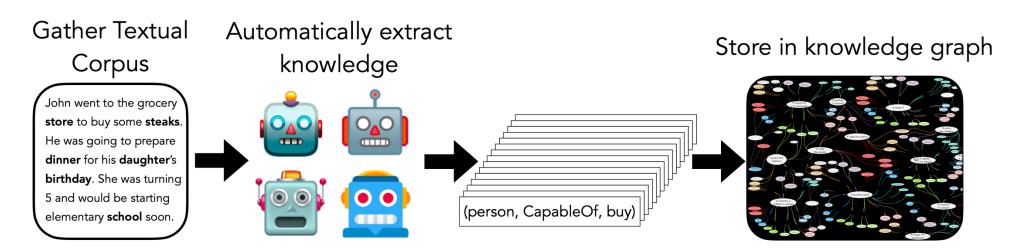
```
RDF facts
relational graph
as Google
```

RDF facts + schema

```
(OWL) Ontology
```


graph + reasoning agent the above two are simplified cases of (OWL) ontology

Knowledge Graph vs Database


- ✓ Intuitive (e.g., no "foreign keys")
- ✓ Data + schema (ontology)
- ✓ IRI/URI not strings
- ✓ Flexible & extensible
- ✓ Rule language
 - Location + capital → location
 - Parent + brother → uncle
- ✓ Other kinds of query
 - Navigation
 - Similarity & Locality

(From Ian Horrocks)

- Crowdsourcing (Encyclopedias) & Domain Experts
 - DBpedia, Wikidata, Zhishi.me (中文), LinkedGeoData, GeoName
 - Domain ontologies like GO, SNOMED CT, FoodON

- The Web, Natural Language Text
 - Open Information Extraction, Web Mining

NLP and ML techniques: NER, Categorization, Relations extraction, Entity linking, etc.

- Semi-structured and structured data
 - DBs, Web Tables, Excel Sheets, CSV files, etc.

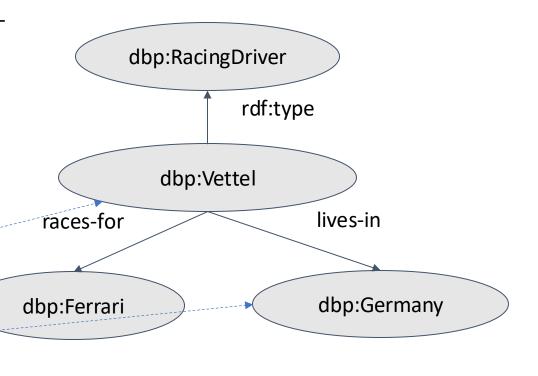
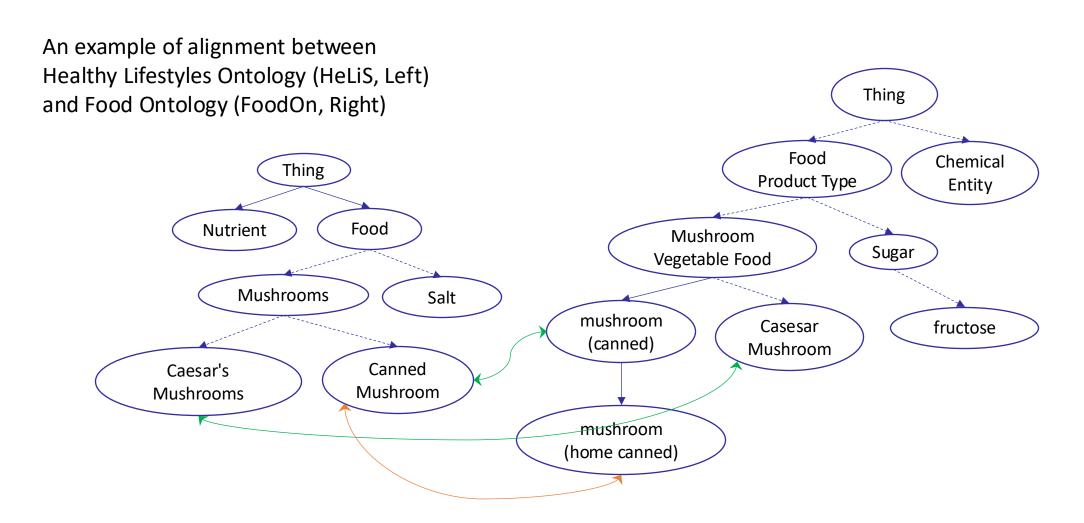
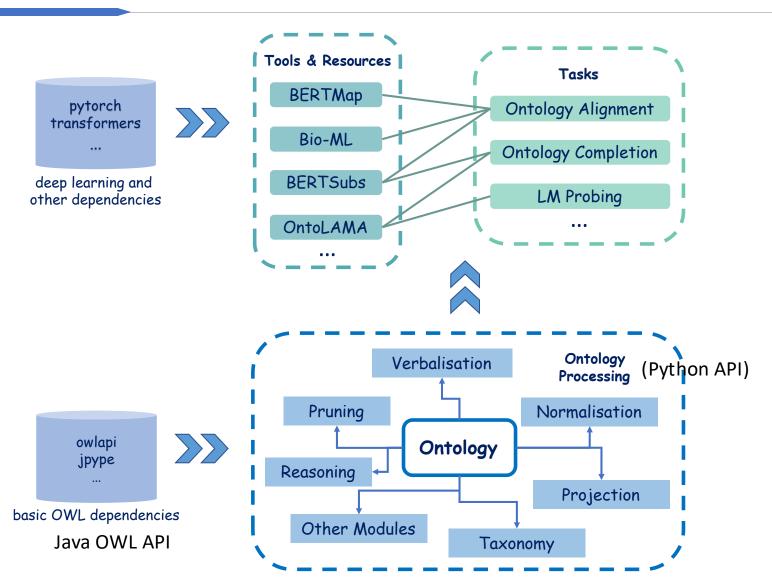

Table to KG transformation (by e.g., rules)

Table to KG matching (cell to entity, column type to class, intercolumn relation to property, e.g., Sebastian Ferrari = dbp:Ferrari)


& New knowledge extraction for KG population

Hamilton races-for Mercedes? Hamilton lives-in England? Hamilton rdf:type Racing Driver?

Alonso	McLaren	Spain
Hamilton	Mercedes	England
Sebastian Vettel	Ferrari	Germany


Data integration (alignment, modulization, canonicalization, etc.)

DeepOnto

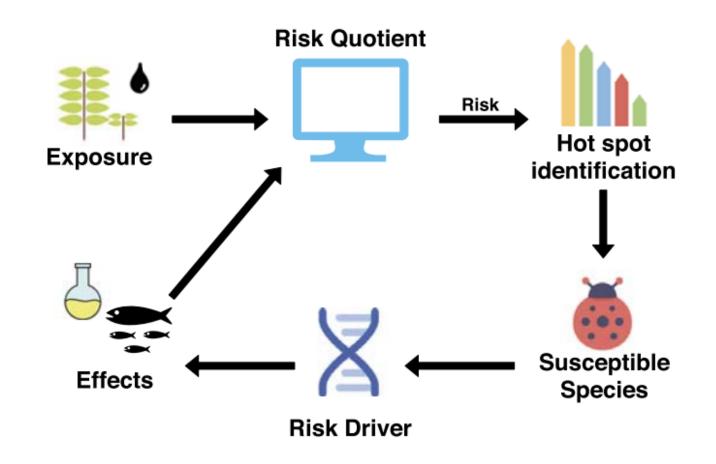
An LM-based Ontology Engineering Library

https://github.com/KRR-Oxford/DeepOnto

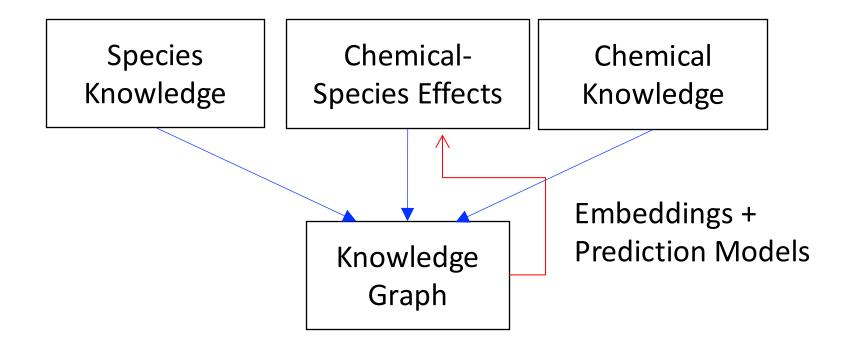
He, Y., et al. "DeepOnto: A Python package for ontology engineering with deep learning." Semantic Web Journal (2024).

Outline

KG Definitions and Core Concepts



Ecotoxicological Effect Assessment: A Simple Case


KG for Life Science: Review and Challenges

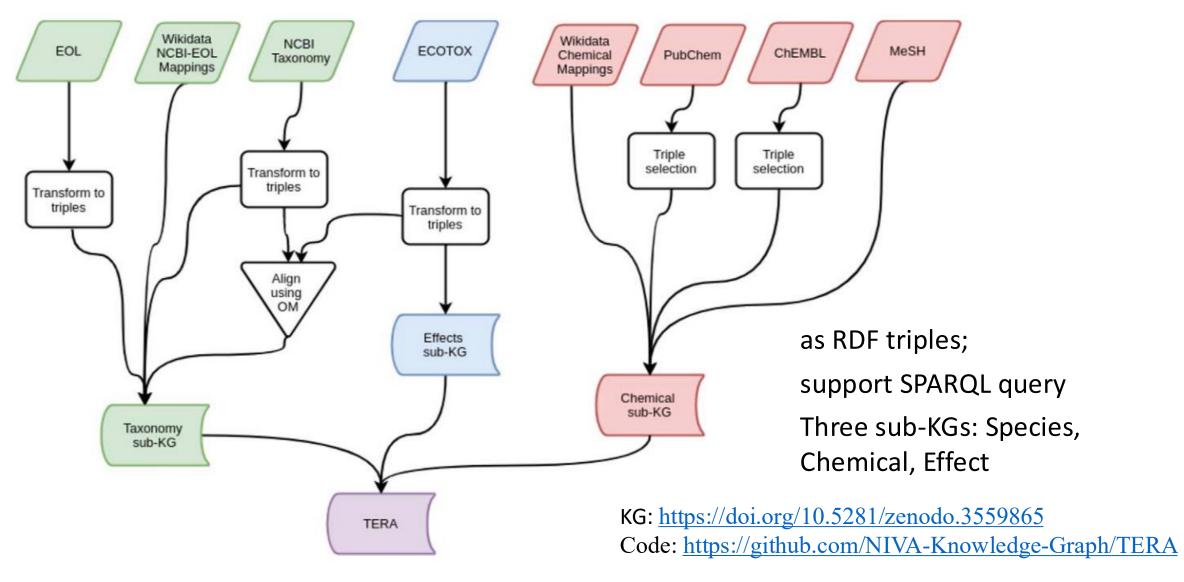
Ecotoxicological Effect Assessment

Simplified pipeline used in Norwegian Institute for Water Research Chemical effect data gathered from laboratory experiments

Ecotoxicological Effect Assessment

[Myklebust et al. 2022]: use **KG and its embeddings**, focus on **mortality**, i.e., lethal concentration to 50% of test population (LC50) measured at 48 hours

How to Construct a Knowledge Graph?


Data sources

- Biological effects: ECOTOXicology database (~1M results, ~12K compounds, ~13K species, ~0.6% coverage of chemical-species pair coverage)
- Biological: NCBI Taxonomy, Encyclopedia of Life (EOL; for species traits)
- Chemical: PubChem, ChEMBL, MeSH

Data integration

- Wikidata mappings of species and chemicals
- Ontology alignment tools
 - LogMap, AML: Lexical matching & index, reasoning
 - Levenshtein distance
 - Alternative: BERTMap (https://github.com/KRR-Oxford/DeepOnto): BERT fine-tuning, lexical matching & index, reasoning-based repair

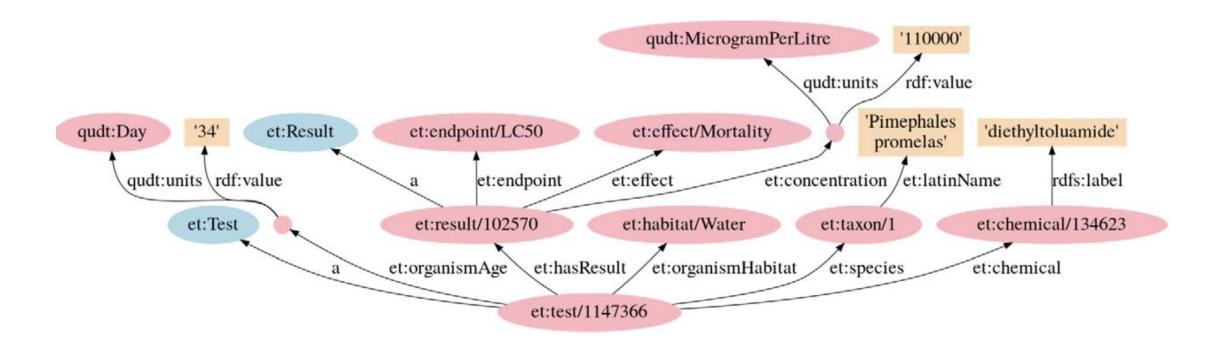
TERA: Toxicological Effect and Risk Assessment KG

TERA: Toxicological Effect and Risk Assessment KG

subject	predicate	object		
	Effects sub-KG			
et:test/1147366	et:compound	et:chemical/134623		
et:test/1147366	et:species	et:taxon/1		
et:test/1147366	et:hasResult	et:result/102570		
et:result/102570	et:endpoint	et:endpoint/LC50		
et:result/102570	et:effect	et:effect/Mortality		
	Entity Mappings			
et:taxon/1	owl:sameAs	ncbi:taxon/90988		
ncbi:taxon/90988	owl:sameAs	wd:Q2700010		
wd:Q2700010	owl:sameAs	eol:211492		
	Taxonomy sub-KG			
ncbi:taxon/90988	rdf:type	ncbi:taxon/51137 ²		
cbi:taxon/90988	rdf:type	ncbi:division/10		
cbi:taxon/90988	ncbi:scientific_name	"Pimephales promelas		
cbi:taxon/90988	ncbi:rank	ncbi:species		
ncbi:taxon/51137	rdfs:subClassOf	ncbi:taxon/7953 ³		
	Chemical sub-KG			
mesh:D003671	mesh:broaderDescriptor	mesh:D001549 ⁵		
mesh:D003671	mesh:pharmacologicalAction	$\mathtt{mesh:} \mathtt{D007302}^6$		
chembl_m:CHEMBL1453317	chembl:hasTarget	chembl_t:CHEMBL1907594		

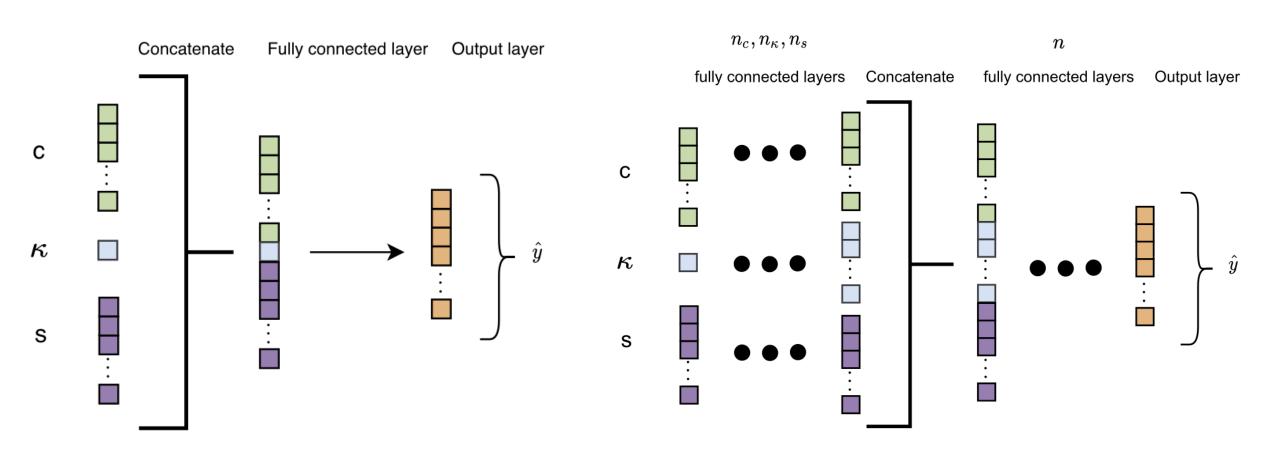
chembl:relSubsetOf

1

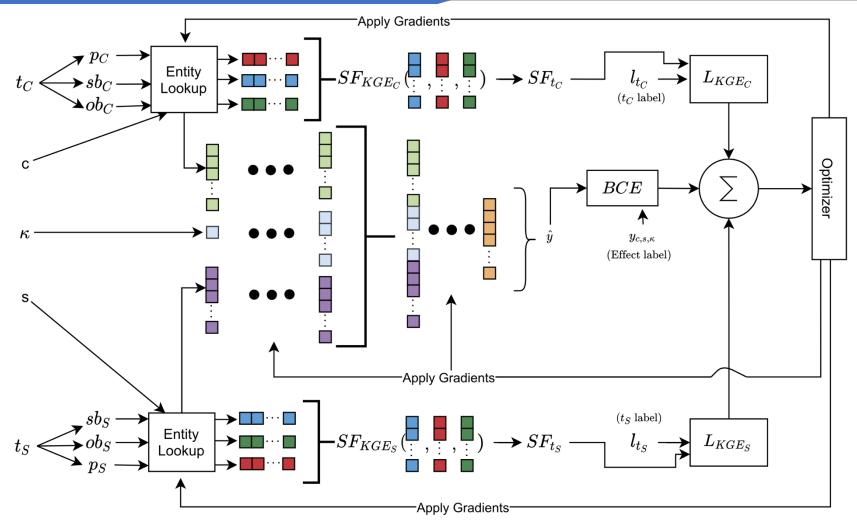

chembl_t:CHEMBL1907594

Examples of

RDF Triples


chembl t:CHEMBL31372738

TERA: Toxicological Effect and Risk Assessment KG


Example of an ECOTOX test and related triples

Link Prediction with TERA

Baselines: Simple (left) and complex (right) MLPs, with the input of pretrained KG embeddings of the species and chemical

Link Prediction with TERA

Method: Simultaneously train the KG embeddings and the MLP

$$L = \alpha_C L_{KGE_C} + \alpha_S L_{KGE_S} + \alpha_{MLP} L_{MLP}$$

Link Prediction with TERA

- Tested TransE, HolE, DistMult, HAKE, ConvE, ConvKB, RotatE, pRotatE, and three different sampling strategies
- Result summary:
 in the majority of the settings, Sensitivity (TP/TP+FN) > 0.9, Specificity
 (TN/FP+TN) > 0.75)

Chemical	Species	$\log(\kappa)$	Predicted	Lethal	Classification
D001556 (hexachlorocyclohexane)	59899 (walking catfish)	-3.4	0.97	1 (yes)	TP
C037925 (benthiocarb)	7965 (sea urchins)	0.9	0.2	0 (no)	TN
D026023 (permethrin)	378420 (bivalves)	0.7	0.96	1 (yes)	TP
D011189 (potassium chloride)	938113 (megacyclops viridis)	6.7	0.27	1 (yes)	FN
C427526 (carfentrazone-ethyl)	208866 (eudicots)	-0.9	0.82	0 (no)	FP
D010278 (parathion)	201691 (green sunfish)	-0.9	0.86	0 (no)	FP

Example predictions by the **simultaneously training method** with the best combination of **HolE-DistMult**

Discussion from a KG Perspective

- KG construction with more data sources?
 - Literatures & reports
 - Data of specific scientific/experimental systems (e.g., in AnIML)
 - Multi-modal data
- Link prediction
 - Accuracy & explanation
 - Multi-modal semantic embedding
 - + symbolic reasoning

Outline

KG Definitions and Core Concepts

Ecotoxicological Effect Assessment: A Simple Case

KG for Life Science: Review and Challenges

KG for Life Science

Knowledge Graph
Construction and
Management
(Sect. 3)

- Alignment for Knowledge Validation
- Knowledge Integration
- Repositories of Ontologies and Mappings
- Ontology Extension
- Instance Matching

Life Science Knowledge Discovery (Sect. 4)

- Therapeutics and Drug Discovery
- Protein Function Prediction
- Predictions for Healthcare

Knowledge Graph for Explainable Al (Sect. 5)

- Explainable AI for Healthcare Practice
- Explainable AI for Knowledge Discovery
- Explainable AI for KG Construction

KG in Life Sciences (Sect. 2)

- Schema-less KGs: Facts in RDF triples
- Schema-based KGs: RDFS, OWL, SHACL, etc.
- Simple ontologies: Taxonomies
- Expressive OWL ontologies

Challenges for Life Science KGs (Sect. 6)

- Scalability
- Evolution & Quality Assurance
- Heterogeneity: Multi-domain & Multimodality
- Human Interaction & Explainability
- Personalized & Customized KGs
- Distributed KGs
- Representation Learning: Symbolic & Subsymbolic Integration

Chen, Jiaoyan, et al. "Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities." *Transactions On Graph Data and Knowledge* (2024). (New, open access journal in the KG community)

Part II: Scientific Large Language Models

Qiang Zhang

qiang.zhang.cs@zju.edu.cn

Tutorial at Learning on Graph Conference (LoG) 26th November, 2024

About Me

Dr. Qiang Zhang

- https://person.zju.edu.cn/zhangqiang
- https://github.com/HICAI-ZJU
- https://scimind.ai/resource/

- I'm an Assistant Professor under the Hundred Talents Program at <u>Zhejiang University</u>, since 2021.9.
- Before that, I was a postdoctoral research fellow in the <u>Centre for Artificial Intelligence</u> in <u>University College London (UCL)</u> in UK. I studied for the Ph.D. degree at UCL from 2017-2020.
- ➤ Prior to that, I obtained M.Sc. from Chinese Academy of Sciences in 2017 and B.Sc. from Shandong University in 2014.

- ❖ AI theory: data-efficient machine learning, foundation model.
- ❖ Applications: natural language processing, knowledge graphs, **AI for Science**.
- ❖ Publications: nature portfolio * 5, top-tier conference papers * 52, patents *4, Google Scholar citations: 5000+.

Outline

Introduction and Preliminary

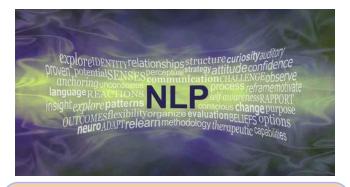
Scientific Large Language Models

3 Challenges and Perspective

Outline

Introduction and Preliminary

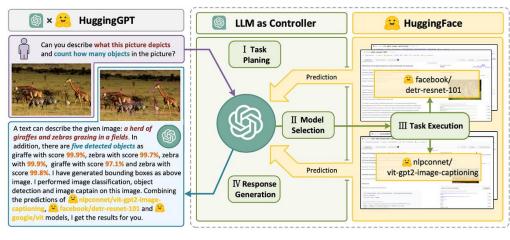
Scientific Large Language Models

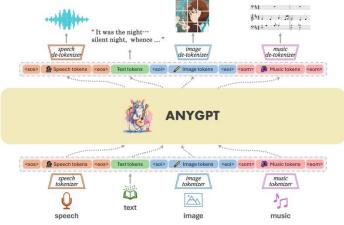

Challenges and Perspective

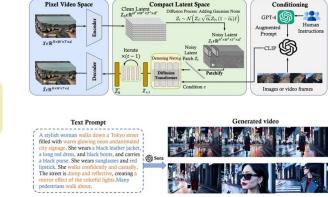
LLMs Revolutionize AGI

Upstream Techniques

Pre-trained Large Language Model, e.g., GPT, GLM, LLaMA

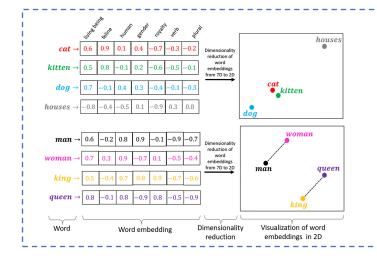


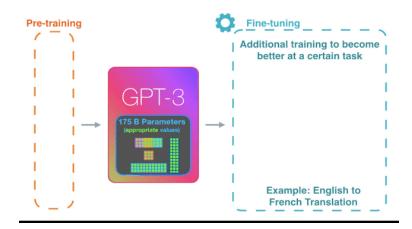

Computational Linguistics: Understanding human language through computational models! **Downstream Tasks**


Question Answering

Knowledge Extraction

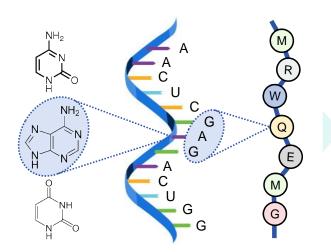
Complex Reasoning


Hugging GPT: Solving AI Tasks with Chat GPT and its Friends in Hugging Face, https://arxiv.org/pdf/2303.17580, 2023.


AnyGPT: Unified Multimodal LLM with Discrete Sequence Modeling, https://arxiv.org/abs/2402.12226, 2024

Sora, https://openai.com/index/sora/ OpenAI, 2024

LLMs Limited to Human Language

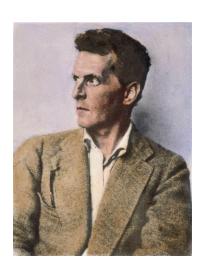


What can GPTs do?

- 1. Chatbots talking to historical figures
- 2. Code generation based on text descriptions
- 3. Answer medical questions
- 4. Stylistic transfer of text
- 5. Write creative novels
- 6.

Protein: MOTS-c

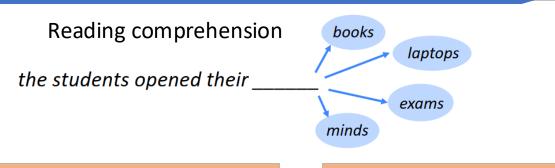
• Gene: MT-RNR1


• Organism: Homo sapiens

• Sequences:

MRWOEMGYIFYPRKLR

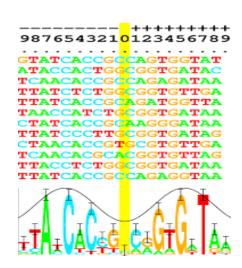
Question: What is the solubility of this protein?

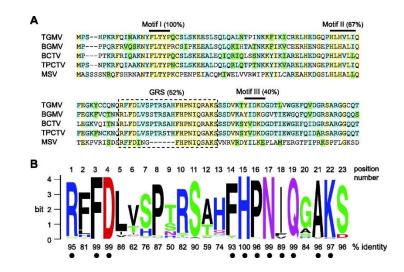

General LLMs The solubility of a specific protein, such as MOTS-c, isn't typically available as a standard piece of information. Protein solubility can depend on various factors, including pH, temperature,

"The limits of my language mean the limits of my world."
--Ludwig Wittgenstein, 1921

Scientific Language Understanding

Symbolized human language



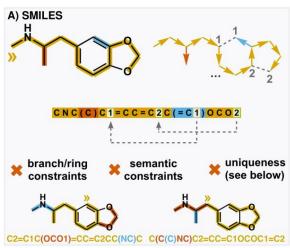

Natural language Models

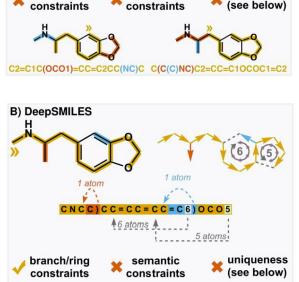

Symbolized biological language

Genomic/Protein language Models

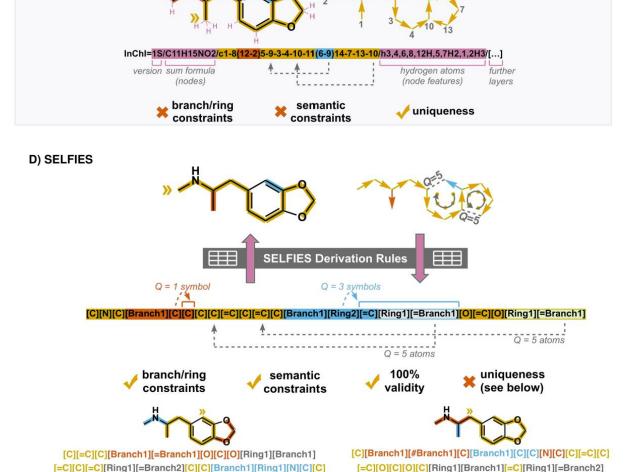
Gene Protein Central Law

Scientific Language Understanding

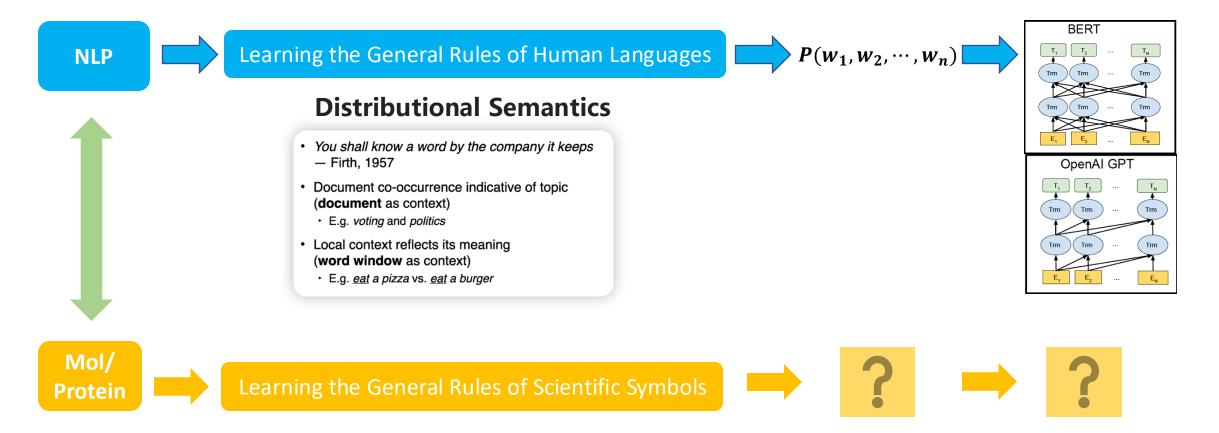



Symbolized molecule language

C) InChl



Molecular language Models



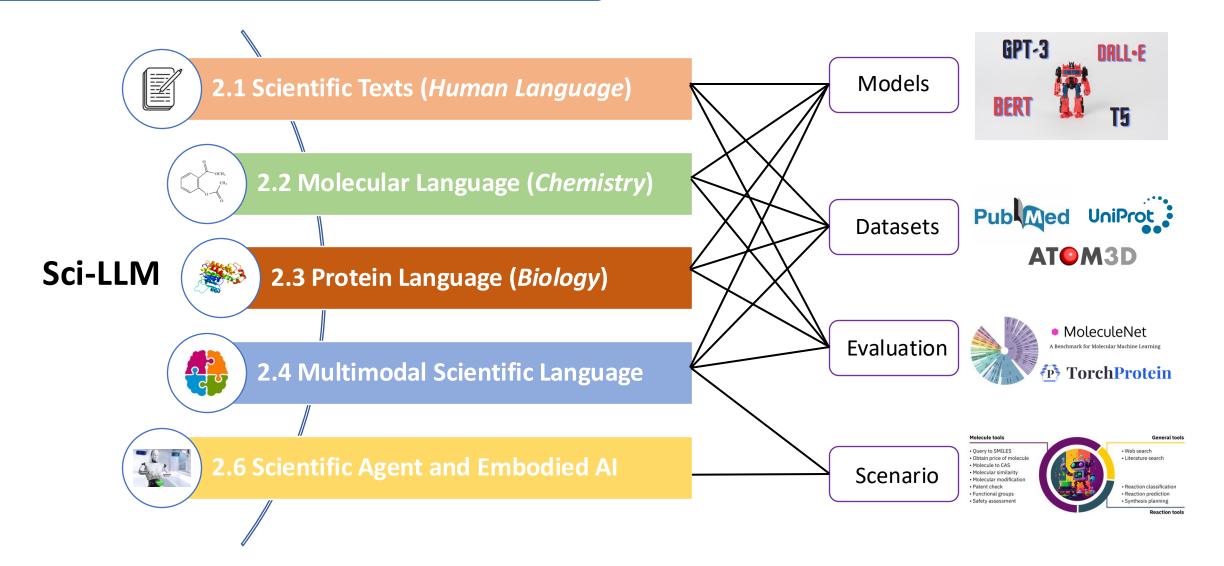
CCC)NC)))C=CC=COCOC5=C9

LLMs for Scientific Language?

Fundamental Question: Does the Distributional Semantics Hypothesis Hold?

Outline

Introduction and Preliminary


Scientific Large Language Models

Challenges and Perspective

Scope of Scientific LLM

Outline

Introduction and Preliminary

Scientific Large Language Models

2.1 Scientific Texts

Challenges and Perspective

Text-Sci-LLM: Models & Datasets

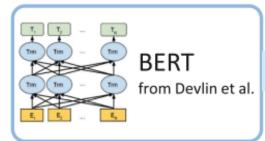
- ❖ Biology + Chemistry + Comprehensive LLM
 - Architecture: **BERT**-based (BioBERT, ChemBERT), **GPT**-based (BioGPT, PharmLLM) and **GLM**-based (SciGLM)
 - Corpus: Initially trained on broad corpora like Wikipedia and papers and then fine-tuned on specific tasks

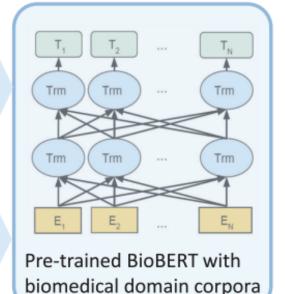
Table 1. Summary of Text-Sci-LLMs

Domain	Model	Time	#Parameters	Base model	Pretraining dataset	Open- source
	BioELMo [150]	2019.04	-	ELMo	PubMed	√
	BioBERT [177]	2019.05	117M	BERT	PubMed, PMC	✓
	BlueBERT [263]	2019.07	117M	BERT	PubMed	✓
	BioMegatron [299]	2020.10	345M-1.2B	BERT	PubMed, PMC	✓
	PubMedBERT [113]	2020.10	117M	BERT	PubMed	×
Dielogy	BioM-BERT[6]	2021.06	235M	BERT	PubMed, PMC	✓
Biology	BioLinkBERT[386]	2022.03	110M, 340M	BERT	PubMed	✓
	BioGPT [219]	2023.03	347M	GPT	PubMed	✓
	BioMedGPT-LM [221]	2023.08	7B	LLaMA	PMC, arXiv, WIPO	✓
	BioinspiredLLM [222]	2024.02	13B	Llama-2	Biological article	✓
	BioMistral [172]	2024.02	7B	Mistral	PMC	\checkmark
	ChemBERT [115]	2021.06	120M	BERT	Chemical journals	√
Chemistry	MatSciBERT [118]	2021.09	117M	BERT	Elsevier journals	✓
•	MaterialsBERT [298]	2022.09	-	BERT	Material journals	✓
	ChemLLM [397]	2024.02	7B	InternLM2	ChemData and Multi-Corpus	✓
	ChemDFM [419]	2024.01	13B	InternLM2	Chemical literature, textbooks	✓
	PharmGPT [48]	2024.02	13B, 70B	LLaMA	Paper, report, book, etc.	×
	SciBERT [18]	2019.09	117M	BERT	Semantic Scholar	✓
Comprehensive	ScholarBERT [131]	2023.05	340M, 770M	BERT	Wiki, Books, etc.	✓
	DARWIN-Base [367]	2023.08	7B	LLaMA	SciQ, Web of Science	✓
	SciGLM [367]	2024.03	6B, 32B	ChatGLM3	SciInstruct	✓
	Uni-SMART [367]	2024.06	7B	-	Patents, news, literature, etc.	×
	INDUS [25]	2023.08	125M	RoBERTa	wikipedia, PubMed, PMC, etc.	×

Text-Sci-LLM: Encoder-only

Pre-training of BioBERT


Pre-training Corpora

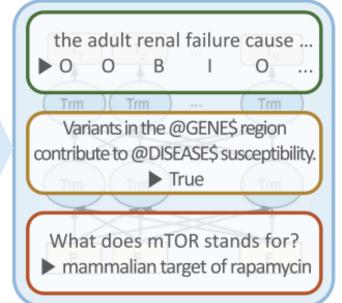


13.5B words

Weight Initialization

BioBERT Pre-training

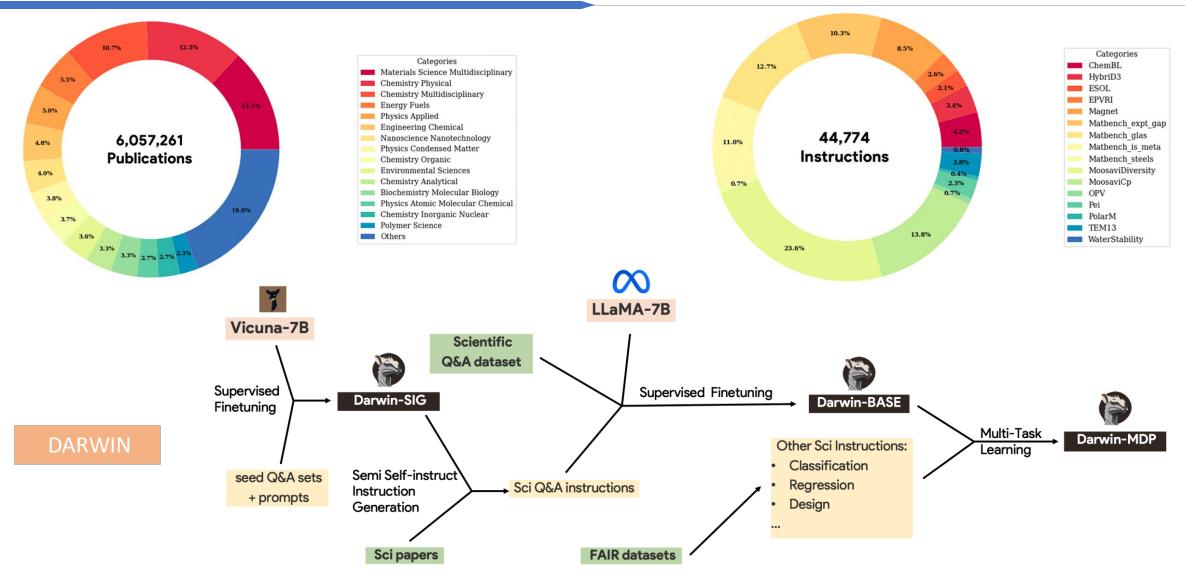
Fine-tuning of BioBERT


Task-Specific Datasets

Named Entity Recognition NCBI disease, BC2GM, ...

Relation Extraction EU-ADR, ChemProt, ...

Question Answering BioASQ 5b, BioASQ 6b, ...


BioBERT Fine-tuning

BioBERT: A pre-trained biomedical language representation model for biomedical text mining, Bioinformatics, 2019

Text-Sci-LLM: Decoder-only

DARWIN Series: Domain Specific Large Language Models for Natural Science, https://arxiv.org/pdf/2308.13565, 2023

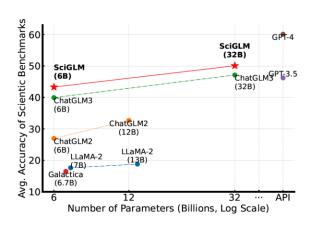
Text-Sci-LLM: Encoder-decoder

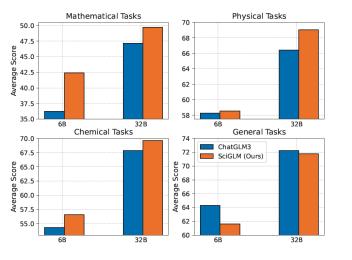
Problem When an electron in a certain excited energy level in a one-dimensional box of length $2.00 \setminus u00c5$ makes a transition to the ground state, a photon of wavelength 8.79 nm is emitted. Find the quantum number of the initial state.

Correct Answer: 4

Predicted Solution by ChatGLM3-32B-Base (Served as baseline)

The ground state has n=1. The energy in the n=1 state is $\frac{1}{L^2}$. For the n=2 state, this becomes $\left(\frac{1}{2L}\right)^2$.


Thus, this energy difference is $\frac{1}{2^2} - \frac{1}{1^2} = \frac{9}{4}$.


By de Broglie's equation, $hc/\bar{\lambda}=\frac{9}{4hc\nu}$, so $\nu=\frac{4hc}{9\lambda}$. Thus, $E=h\nu=hc\frac{4}{9\lambda}$.

Therefore, n=2, thus the answer is 2.

SciInstruct Physics Bootstrapped QA dataset **Human Conclusion** How to determine the harmonic Problem vibration frequency of a single Problem 1 Comprehension degree of freedom system? CoT 1 LMs 🚱 mistakes Answer 1 Annotate Sample Chemistry Answer 1 LLMs \Rightarrow Try to calculate the boiling point (G) Calculation Problem n Labeled Data of water at 670kPa external Problem n mistakes CoT n Positive Data Answer n Math Answer n False reasoning Instruction The number of asymptotes of the curve $y=\sqrt{\frac{x^2+x}{x^2-1}}$ is Negative Data Self-Reflective Annotation -quality Critic & Revise Classifier Filter Stage Formal Proofs (Lean) QA Sample theorem const_add_term {a} w/o R Filter negatives [add comm monoid a] (k n x a Retain positives a') $(h : k + a = a') : \n k + @term$ Reasoning steps (R) α n x a = term n x a' := $-\cdot -\cdot -\cdot -\cdot -$ Annotation ·- Filtering

SciGLM

Text-Sci-LLM: Evaluation

Table 2. Summary of the benchmarks for Text-Sci-LLMs

Dataset	Last updated	Subset	#Item	Domain	Type	Capability	Language
MMLU [127] 2020.09		High-school-biology High-school-chemistry College-biology College-chemistry	344 227 162 110	Biology Chemistry Biology Chemistry	Multiple choice	Pre-college Pre-college College College	English
C-Eval [138] Mid-school-chemic High-school-biolog High-school-chem		Mid-school-biology Mid-school-chemistry High-school-biology High-school-chemistry College-chemistry	218 210 199 196 253	Biology Chemistry Biology Chemistry Chemistry	Multiple choice	Pre-college Pre-college Pre-college Pre-college College	Chinese
AGIEval [424]	2023.04	Gaokao-biology Gaokao-chemistry	210 207	Biology Chemistry	Multiple choice	Pre-college	Chinese
ScienceQA [216]	2022.09	Natural-science-biology Natural-science-chemistry	4098 1194	Biology Chemistry	Multiple choice / QA	Pre-college	English
XieZhi [114]	2023.06	Science-biology Science-chemistry	2831 399	Biology Chemistry	Multiple choice	Mixed	Both
SciEval [313] 2023.08		Basic-biology Knowledge-biology Calculation-biology Research-biology Basic-chemistry Knowledge-chemistry Calculation-chemistry	2142 1369 299 995 2909 1700 3396	Biology Biology Biology Biology Chemistry Chemistry Chemistry	Multiple choice / QA	Mixed	English
GAOKAO-Bench [406]	2023.11	Biology Chemistry	266 133	Biology Chemistry	Multiple choice / QA	Mixed	Chinese
SciKnowEval [98]	2024.06	Biology Chemistry	27730 22250	Biology Chemistry	Multiple choice / QA / True or flase	Mixed	English
Bioinfo-Bench-QA [49] BLURB [113] PubMedQA [151] SciBench [345] ARC [64] SciQ [152] ChemData [397]	2023.10 2020.07 2019.09 2023.07 2018.03 2017.07 2024.02		150 648k 273.2k 272 7.78k 13.7k 727k	Biology Biology Chemistry Natural Science Natural Science Chemistry	Multiple choice Multiple NLP tasks True or false QA Multiple choice Multiple choice QA	Post-college Mixed College College Pre-college Mixed Mixed	English

Evaluation Benchmarks

- MMLU: 57 subjects, including STEM humanities, social sciences
- **C-Eval**: 13,948 multi-choice questions spanning 52 diverse disciplines
- AGIEval: 20 qualification exams, e.g., Gaokao and American SAT, law school admission tests
- ScienceQA: 21,208 multimodal multiplechoice questions, involving elementary and high school science curricula
- **Xiezhi**: 249,587 multi-choice questions spanning 516 diverse disciplines from the elementary to graduate entrance tests
- **SciEval**: 18,000 scientific questions across chemistry, physics, and biology
- SciQ: 13,679 science exam questions on subjects like chemistry and biology
- SciBench: 695 problems from textbooks, tailored for college-level problem-solving
- SciAssess: 14,721 questions across 29 tasks in five domains, with paper memorization, comprehension, and analysis

Text-Sci-LLM: Evaluation

SciKnowEval

- L1: Studying Extensively (i.e., knowledge coverage): remember and understand concepts
- L2: Enquiring Earnestly (i.e., knowledge enquiry and exploration): deep enquiry and exploration
- L3: Thinking Profoundly (i.e., knowledge reflection and reasoning): reasoning and calculating
- L4: Discerning Clearly (i.e., knowledge discernment and safety assessment): make secure, ethical decisions
- L5: Practicing Assiduously (i.e., knowledge practice and application): apply knowledge in real-world

SciKnowEval: Evaluating Multi-level Scientific Knowledge of Large Language Models, https://arxiv.org/abs/2406.09098, 2024

Text-Sci-LLM: Evaluation

Domain	Ability	Task Name	Task Type	Data Source	Method	#Questions
	L1	Biological Literature QA	MCQ	Literature Corpus	I	14,869
	Li	Protein Property Identification	MCQ	UniProtKB	III	1,500
		Drug-Drug Relation Extraction	RE	Bohrium	II	464
		Biomedical Judgment and Interpretation	T/F	PubMedQA	II	904
		Compound-Disease Relation Extraction	RE	Bohrium	II	867
	L2	Gene-Disease Relation Extraction	RE	Bohrium	II	203
	LZ	Detailed Understanding	MCQ	LibreTexts	I	828
		Text Summary	GEN	LibreTexts	I	1,291
		Hypothesis Verification	T/F	LibreTexts	I	619
		Reasoning and Interpretation	MCQ	LibreTexts	I	647
		Solubility Prediction	MCQ	PEER, DeepSol	III	20
		β -lactamase Activity Prediction	MCQ	PEER, Envision	III	209
D: 1		Fluorescence Prediction	MCQ	PEER, Sarkisyan's	III	205
Biology	L3	GB1 Fitness Prediction	MCQ	PEER, FLIP	III	201
		Stability Prediction	MCQ	PEER, Rocklin's	III	203
		Protein-Protein Interaction	MCQ	STRING, SHS27K, SHS148K	III	205
		Biological Calculation	MCQ	MedMCQA, SciEval, MMLU	II	60
		Biological Harmful QA	GEN	Self-generated	I	29
	L4	Proteotoxicity Prediction	MCQ, T/F	UniProtKB	III	510
		Biological Laboratory Safety Test	MCQ, T/F	LabExam (ZJU)	II	194
		Biological Protocol Procedure Design	GEN	Protocol Journal	I	591
		Biological Protocol Reagent Design	GEN	Protocol Journal	I	565
	L5	Protein Captioning	GEN	UniProtKB	III	937
	20	Protein Design	GEN	UniProtKB	III	860
		Single Cell Analysis	GEN	SHARE-seq	III	300
	-	Molecular Name Conversion	MCO	PubChem	III	1,008
	L1	Molecular Property Identification	MCQ, T/F	MoleculeNet	III	1,625
	Li	Chemical Literature QA	MCQ, 1/I	Literature Corpus	I	6,310
		Reaction Mechanism Inference	MCQ	LibreTexts	I	269
		Compound Identification and Properties	MCQ	LibreTexts	I	497
		***************************************	RE	NERRE	П	821
	L2	Doping Extraction			I	
	L2	Detailed Understanding	MCQ	LibreTexts LibreTexts	I	626 692
		Text Summary	GEN			
		Hypothesis Verification	T/F	LibreTexts	I	544
		Reasoning and Interpretation	MCQ	LibreTexts	I	516
		Molar Weight Calculation	MCQ	PubChem	III	1,042
Chemistry		Molecular Property Calculation	MCQ	MoleculeNet	II	740
-		Molecular Structure Prediction	MCQ	PubChem	III	608
	L3	Reaction Prediction	MCQ	USPTO-Mixed	II	1,122
		Retrosynthesis	MCQ	USPTO-50k	II	1,122
		Balancing Chemical Equation	GEN	WebQC	III	535
		Chemical Calculation	MCQ	XieZhi, SciEval, MMLU	II	269
		Chemical Harmful QA	GEN	Proposition-65, ILO	III	454
	L4	Molecular Toxicity Prediction	MCQ, T/F	Toxric	III	870
		Chemical Laboratory Safety Test	MCQ, T/F	LabExam (ZJU)	II	53
		Molecular Captioning	GEN	ChEBI-20	II	943
	L5	Molecular Generation	GEN	ChEBI-20	II	897
	LJ	Chemical Protocol Procedure Design	GEN	Protocol Journal	I	74
		Chemical Protocol Reagent Design	GEN	Protocol Journal	I	129

Evaluation Tasks and Dataset Statistics

Zero-shot performance of LLMs on SciKnowEval

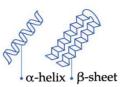
Models			Biol	ogy					Chen	nistry			Overall
Models	L1	L2	L3	L4	L5	All	L1	L2	L3	L4	L5	All	Rank
GPT-4o	2.00	2.25	6.00	4.00	1.20	3.28	1.00	2.29	4.00	7.00	3.75	3.46	1
Gemini1.5-Pro	4.50	5.12	<u>6.14</u>	2.67	6.60	5.36	<u>2.67</u>	4.00	3.57	1.33	11.75	<u>4.67</u>	2
GPT-4-Turbo	4.00	5.50	7.86	3.33	4.00	5.48	3.00	1.57	7.29	<u>4.67</u>	7.75	4.83	3
Claude3-Sonnet	5.50	<u>4.12</u>	8.43	4.00	2.00	<u>5.00</u>	6.00	4.43	7.86	8.00	6.00	6.33	4
GPT-3.5-Turbo	<u>2.50</u>	7.62	11.86	4.67	7.60	8.04	9.00	7.86	8.29	7.00	8.00	8.04	5
Llama3-8B-Inst	8.50	5.50	11.71	7.67	10.80	8.80	6.00	6.29	8.57	7.33	14.25	8.38	6
Qwen1.5-14B-Chat	5.50	10.38	8.71	9.00	8.40	8.96	9.33	7.14	6.43	8.00	10.50	7.88	7
Qwen1.5-7B-Chat	9.00	10.50	13.71	8.00	10.60	11.00	10.67	9.86	9.29	11.67	13.50	10.62	10
ChatGLM3-6B	12.00	14.25	11.43	10.00	12.00	12.32	15.33	15.00	15.00	12.33	12.75	14.33	12
Gemma1.1-7B-Inst	16.00	16.75	11.71	14.67	12.80	14.24	17.00	15.86	12.57	11.00	7.25	13.00	14
Llama2-13B-Chat	19.00	11.38	17.14	10.67	10.60	13.36	18.67	13.86	15.57	10.33	14.00	14.54	15
Mistral-7B-Inst	11.00	13.12	14.71	12.67	18.20	14.30	14.33	14.14	15.29	7.33	19.00	14.46	16
ChemDFM-13B	6.50	11.12	12.00	9.67	12.40	11.08	6.67	9.43	8.29	8.33	1.75	7.33	8
ChemLLM-20B-Chat	12.50	6.62	10.14	14.67	13.00	10.32	10.00	7.71	11.00	16.33	4.00	9.42	9
MolInst-Llama3-8B	13.50	9.88	7.86	12.00	18.20	11.52	9.33	9.57	7.43	9.33	17.75	10.25	11
Galactica-30B	11.00	13.75	8.43	16.67	16.80	13.00	7.67	16.43	13.00	16.67	16.00	14.29	13
SciGLM-6B	16.00	14.12	11.43	16.00	16.60	14.24	16.00	15.29	13.14	17.67	15.25	15.04	17
ChemLLM-7B-Chat	15.00	15.88	13.86	14.33	16.60	15.20	15.33	14.86	15.43	16.00	7.75	14.04	18
Galactica-6.7B	17.50	16.50	11.86	18.00	19.20	16.00	13.00	17.86	13.00	13.00	18.50	15.33	19
LlaSMol-Mistral-7B	19.50	16.75	14.14	19.67	17.20	16.68	19.33	18.71	16.29	20.00	1.25	15.33	20

Outline

Introduction and Preliminary

Scientific Large Language Models

• 2.3 Protein Language


Challenges and Perspective

Prot-LLM: Models

Primary Structure (Amino acid sequence)

Secondary Structure

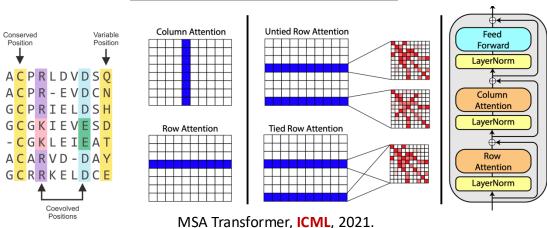
Teritary Structure

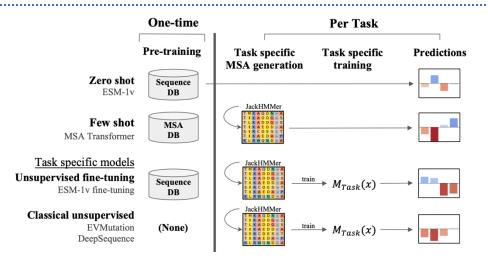
Quaternary Structure

	Model	Time	#Parameters	Base model	Pretraining Dataset	Capability	Open sourc
	ESM-1b [281]	2020.02	650M	RoBERTa	UniRef50	Secondary struct. pred., Contact pred., etc.	✓
	ESM-MSA-1b [277]	2021.02	100M	ESM-1b	UniRef50	Secondary struct. pred., Contact pred., etc.	✓
	ESM-1v [238]	2021.02	650M	ESM-1b	UniRef90	Mutation effect pred.	✓
	ProtTrans [87]	2021.07	-	BERT, Albert, Electra	UniRef, BFD	Secondary struct. pred., Func. pred., etc	✓
	PMLM [122]	2021.07	87M - 731M	Trans. enc.	Uniref50/Pfam	Contact pred.	×
	Mansoor et al. [229]	2021.09	100M	ESM-1b	-	Mutation effect pred.	×
	ProteinBERT [32]	2022.02	16M	BERT	UniRef90	Func. pred.	✓
	LM-GVP [351]	2022.04	-	Trans. enc	-	Func. pred.	✓
ncoder-only	RSA [225]	2022.05	-	ESM-1b	-	Func. pred.	✓
	OntoProtein [403]	2022.06	-	BERT	ProteinKG25	Func. pred.	✓
	ESM-2 [195]	2022.07	8M - 15B	RoBERTa	UniRef50	Func. pred., Struct. pred.	✓
	PromptProtein [354]	2023.02	650M	RoBERTa	UniRef50, PDB	Func. pred.	✓
	KeAP [428]	2023.02	-	RoBERTa	ProteinKG25	Func. pred.	✓
	ProtFlash [339]	2023.10	79M/174M	Trans. enc	UniRef50	Func. pred.	✓
	ESM-GearNet [416]	2023.10	-	ESM-1b, GearNet	-	Func. pred.	✓
	SaProt [312]	2023.10	650M	BERT	-	Mutation effect pred.	✓
	ProteinNPT [248]	2023.12	-	Trans. enc.	-	Fitness pred., Redesign	×
	Outeiral et al. [254]	2024.02	10M - 5B	Trans. enc.	European Nucleotide Archive	Protein represent learning	✓
	ESM All-Atom [422]	2024.06	35M	RoBERTa	AlphaFold DB	Unified Molecular Modeling	×
	KnowRLM [349]	2024.06	-	Trans. enc.	• -	Protein Directed Evolution	×
	ESM3 [121]	2024.06	98B	RoBERTa	PDB	Seq. pred., Func. pred., Struct. pred.	✓
	ProGen [226]	2020.03	1.2B	GPT	Uniparc SWISS-Prot	Functional prot. gen.	✓
	ProtGPT2 [99]	2021.01	738M	GPT	Uniref50	De novo protein design and engineering	✓
	ZymCTRL [241]	2022.01	738M	GPT	BRENDA	Functional enzymes gen.	/
ecoder-only	RITA [128]	2022.05	1.2B	GPT	UniRef100	Functional prot. gen.	×
,	IgLM [302]	2022.12	13M	GPT	-	Antibody design	/
	ProGen2 [245]	2023.10		GPT	Uniref90, BFD30, PDB	Functional prot. gen.	✓
	ProteinRL [309]	2023.10	764M	GPT	-	Prot. design	×
	PoET [9]	2023.11	201M	GPT	-	Prot. family. gen.	×
	C. Frey <i>et al.</i> [104]		9.87M/1.03M	GPT	hu4D5 antibody mutant	Functional prot. gen.	×

❖ Protein LLMs

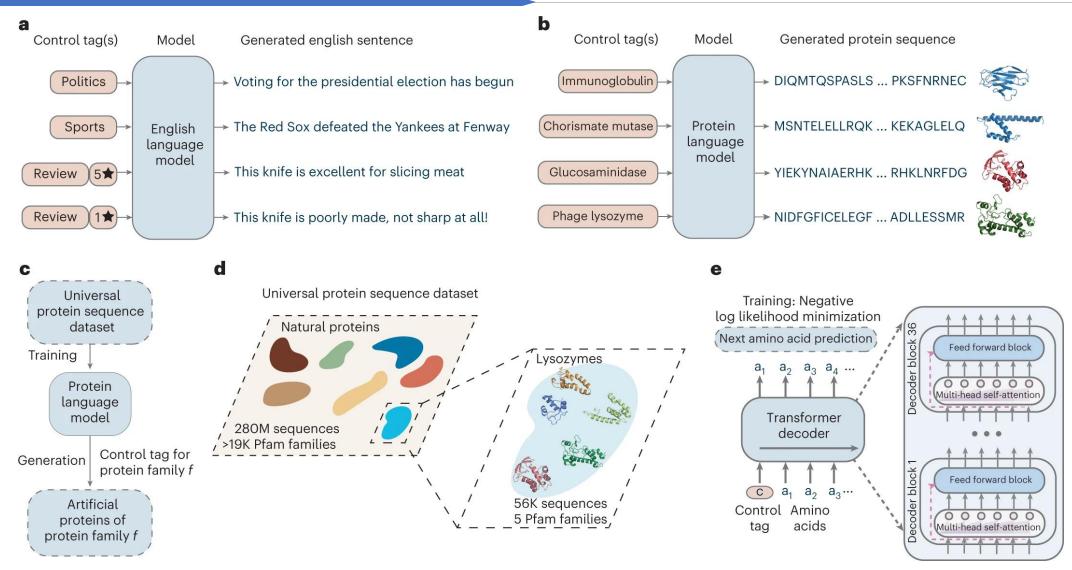
- Protein vocabulary: 20 amino acids in nature, special tokens like <BOS> and <EOS>
- Architectures: BERT, RoBERTa, GPT, GLM, T5, Transformer
- **Sizes**: 100M, 1B, 10B, 100B
- Datasets: Uniref, Pfam, SwissProt, PDB, BFD30, AlphaFoldDB, ColdFoldDB
- Tasks: function prediction, family prediction, protein-protein interaction, contact prediction, mutation effect prediction, structure prediction, sequence optimization, protein de novo design, inverse folding


	Fold2Seq [40]	2021.01	-	Transformer	-	Prot. design	✓
	MSA2Prot [273]	2022.04	-	Transformer	-	Prot. gen., Variant func. pred.	×
	Sgarbossa et al. [295]	2023.02	-	MSA Transformer	-	Prot. gen.	✓
	Lee et al. [178]	2023.02	150M	Transformer	-	Prot. design	×
Encoder-Decoder	LM-Design [424]	2023.02	664M	Transformer	-	Prot. design	✓
Encoder-Decoder	MSA-Augmenter [402]	2023.06	260M	Transformer	Uniref50	MSA gen.	✓
	ProstT5 [125]	2023.07	3B	T5	PDB	Seqstruct. translation	✓
	xTrimoPGLM [44]	2023.07	100B	GLM	Uniref90, ColdFoldDB	Prot. gen., Func. pred.	×
	SS-pLM [294]	2023.08	14.8M	Transformer	Uniref50	Prot. gen.	×
	pAbT5 [62]	2023.10	-	T5	-	Prot. design	×
	ESM-GearNet- INR-MC [179]	2024.04	-	Transformer	Swiss-Prot, AlphaFoldDB	Prot. gen	×


(Continued)

Prot-LLM: Encoder-only

ESM series


Language models enable zero-shot prediction of the effects of mutations on protein function, www.biorxiv.org/content/10.1101/2021.07.09.450648v2, 2021

Multi-level Protein Structure Pre-training with Prompt Learning, ICLR, 2022

Prot-LLM: Decoder-only

ProGen: Large language models generate functional protein sequences across diverse families, Nature Biotechnology, 2023

Prot-LLM: Encoder-decoder

Protein Generation Tasks

Protein Understanding Tasks

De-novo Protein Sequence Design 3D Structure Prediction **Projection Module** 3csl A (ID: 13.9%) (Residue- OR TMscore=0.81 Sequence-level) Contact Map Prediction Pooling xTrimoPGLM G E V[E]**Fold Prediction xTrimoPGLM** ATGEV **Fitness Prediction Optimal PH Prediction** AT [gMASK][S] GEV **xTrimoPGLM** Partial Protein Sequence Design x_3 x_6 [E] Antibody CDR Re-design (368.04.B.0106) $\times L$ $\mathbf{E} \mathbf{T} \mathbf{E}$ x_6 **xTrimoPGLM** Suffix **Prefix** T G[sMASK]V[S]ETContext [MASK] [sMASK] [gMASK]

Prot-LLM: Datasets

Table 6. Summary of datasets for Prot-LLMs

	Dataset	Last updated	Scale	Keywords
	UniRef100 [315, 316] UniRef90 [315, 316] UniRef50 [315, 316]	2023.11	314M 150M 53M	Complete collection of protein sequences from UniProtKB Cluster UniRef100 sequences at 90% sequence identity level Cluster UniRef100 sequences at 50% sequence identity level
Pretraining	UniProtKB/Swiss-Prot [29] UniProtKB/TrEMBL [240]	2023.11	570K 251M	High-quality, manually curated protein sequence database Computationally annotated protein sequence database
	UniParc [69] Pfam [100]	2023.11 2023.09	632M 47M	Comprehensive and non-redundant protein sequence database Protein family database
	BFD [157, 306, 307] PDB [364] AlphaFoldDB [157, 334]	2021.07 2023.12 2021.11	2.5B 214K 200M	Protein sequences from multiple databases and resources Experimentally determined accurate protein structures Protein structures predicted by AlphaFold
Benchmark	CASP [171] EC [236] GO [8] CATH [252] HIPPIE [288] SCOP [214] ProteinGym [247] FLIP [75] PEER [377] TAPE [276] Reactome [144]	2022.01 2023.11 2023.11 2023.02 2022.04 2023.01 2022.12 2022.01 2022.11 2021.09 2023.12	2.6 M 1.5M 151M 39K 914K ~ 300K ~ 320K ~ 390K ~ 390K ~ 390K ~ 390K	Fitness landscape prediction (AAV, Thermostability, GB1) Protein function, Localization, Structure prediction, Protein-protein interaction, Protein-ligand interaction Remote homology detection, Secondary structure, Contact, Fluorescence, Stability prediction Biological interactions and pathways
	STRING [317] BioGRID [253] InterPro [258]	2022.11 2023.12 2024.01	59.3M 271k ~ 41k	Protein-Protein interaction networks Genetic and protein interactions Classification of protein families

Prot-LLM: Evaluation

Evaluation Metric

- Novelty: the fraction of the generated proteins that are not present in the training set
- Frechet Protein Distance: the similarity between a set of generated proteins (G) and a reference set (R)

$$FPD = ||\mu_G - \mu_R||^2 + Tr(\Sigma_G + \Sigma_R - 2\sqrt{\Sigma_G \Sigma_R})$$

- **Diversity**: analyzing the variety of the generated proteins against known protein databases with BLAST, metrics such as sequence similarity, percentage of unique sequences, and alignment scores
- **Foldability**: the average per-residue confidence score, denoted as **pLDDT**, across the entire protein sequence, being an indicator of the model's confidence in its predictions for individual residues
- Recovery: the success or accuracy in predicting the correct amino acid sequence that corresponds to a
 given 3D structure. A high recovery rate indicates that the designed sequences are likely to fold the desired
 structures.

Outline

Introduction and Preliminary

Scientific Large Language Models

Challenges and Perspective

Sci-LLM: Summary

Scientific Symbols & Language

SMILES: OC(=O)C1=CC=CC=C1O [O][C][=Branch1][C][=O][C] Molecule SELFIES: [=C][C][=C][C][=C][Ring1] [=Branch1][O] 1S/C7H6O3/c8-6-4-2-1-3-2D Topology 5(6)7(9)10/h1-4,8H,(H,9,10) Structure Structure **Protein** VDSPOERASLDEN... α-helix β-sheet Primary Structure Secondary Teritary Quaternary (Amino acid sequence) Structure Structure Structure

ATCGGTGACTATCG

Textual LLMs (Natural language-centric)

Ø Bio. & Chem. Knowledge

What is the mitochondria?

Multimodal

Molecular LLMs (Molecular language-centric)

Ø Molecule Sequence N=C(N)NCC[C@H](N)C...

Protein LLMs (Protein language-centric)

Ø Protein Sequence RASLDVETNSPPOENE...

Genomic LLMs (Genomic language-centric)

Ø Genome Sequence GAAGTCACGGCGTA...

Perspective

• Training Data:

RNA Sequence: AUCGGUGACUAUCG

DNA Sequence:

Genome

Scale of Pre-training Datasets

MMM

Double-stranded

DNA Structure

Single-stranded

RNA Structure

- Quality of Finetuning Datasets
- Lack of Cross-modal Datasets
- Model Evaluation:
 - Computational vs wet-lab

Architectures and Learning Objectives:

- Handling Longer Sequences
- Incorporating 3D Structural Information
- Autoregressive Learning Objective
- Security and Ethics:
 - Data Privacy, Model Bias, Equal Access

Relevant Materials

- Accompanying survey of this tutorial:
 - Scientific Large Language Models: A Survey on Biological & Chemical Domains, https://arxiv.org/pdf/2401.14656
 - Github Repository: https://github.com/HICAI-ZJU/Scientific-LLM-Survey
- Surveys for related topics:
 - o Comprehensive
 - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems, https://arxiv.org/pdf/2307.08423
 - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery, https://arxiv.org/abs/2406.10833
 - Chemical molecules
 - MolGenSurvey: A systematic survey in machine learning models for molecule design, https://arxiv.org/abs/2203.14500
 - A Systematic Survey of Chemical Pre-trained Models, https://www.ijcai.org/proceedings/2023/0760.pdf
 - Biological proteins
 - Learning the protein language: Evolution, structure, and function, https://www.cell.com/cell-systems/pdf/S2405-4712(21)00203-9.pdf
 - Protein language models and structure prediction: Connection and progression, https://arxiv.org/pdf/2211.16742
 - Learning functional properties of proteins with language models, https://www.nature.com/articles/s42256-022-00457-9

Thank You!

Dr. Qiang Zhang

qiang.zhang.cs@zju.edu.cn

Part III: Integrating KGs and LLMs for Scientific Applications

Zaiqiao Meng zaiqiao.meng@glasgow.ac.uk

Tutorial at Learning on Graph Conference (LoG) 26th November, 2024

About Me

Dr. Zaiqiao Meng

https://mengzaiqiao.github.io/

https://www.ai4biomed.org

- ➤ UK Lecturer (Assistant Professor) at the School of Computing Science,
 University of Glasgow (2022.01 now)
- ➤ Postdoctoral Researcher at the Language Technology Lab (LTL) of the University of Cambridge (2020.07 2022.01)
- ➤ Postdoctoral Researcher at the IR Group of the **University of Glasgow** (2019.03 2020.07)
- > Ph.D. degree in Computer Science from **Sun Yat-sen University** (2018)

- Al for BioMedicine
- Information Retrieval
- Knowledge Graphs
- Large Language Models
- LLM-based Agents
- Al for Scientific Discovery

Outline

Knowledge Incorporation Frameworks

KG Integration for Scientific NLP Tasks

KG Integration for Scientific Prediction Tasks

Outline

Knowledge Incorporation Frameworks

KG Integration for Scientific NLP Tasks

KG Integration for Scientific Prediction Tasks

KG-enhanced LLMs

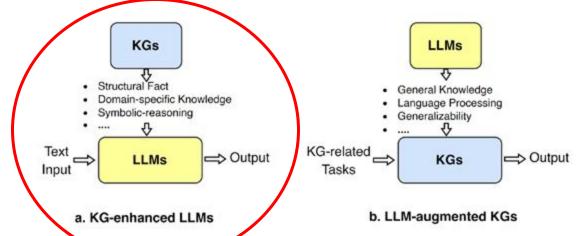
Knowledge Graphs (KGs)

Cons:

- Implicit Knowledge
- Hallucination
- Indecisiveness
- Black-box
- Lacking Domainspecific/New Knowledge

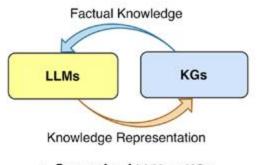
Pros:

- Structural Knowledge
- Accuracy
- Decisiveness
- Interpretability
- · Domain-specific Knowledge
- Evolving Knowledge


Pros:

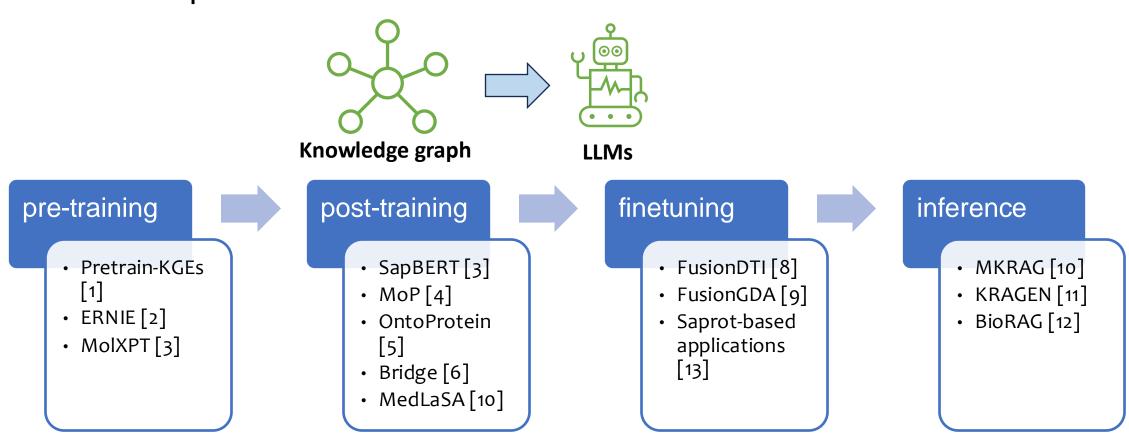
- General Knowledge
- Language Processing
- Generalizability

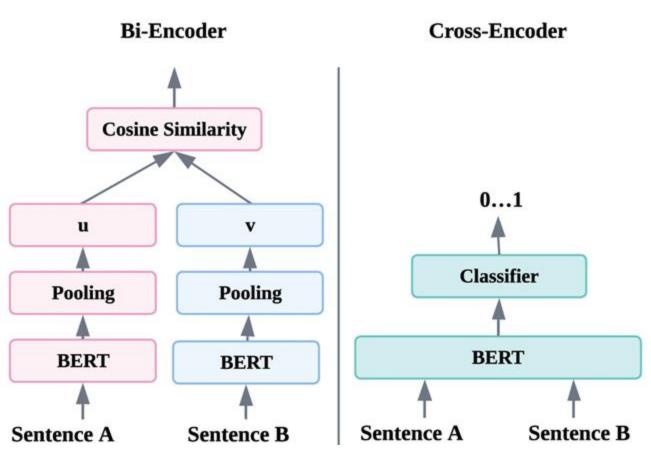
Cons:


- Incompleteness
- Lacking Language Understanding
- Unseen Facts

Large Language Models (LLMs)

KG-enhanced LLMs, which incorporate KGs during different phases of LLMs, or for the purpose of enhancing understanding of the knowledge learned by LLMs;

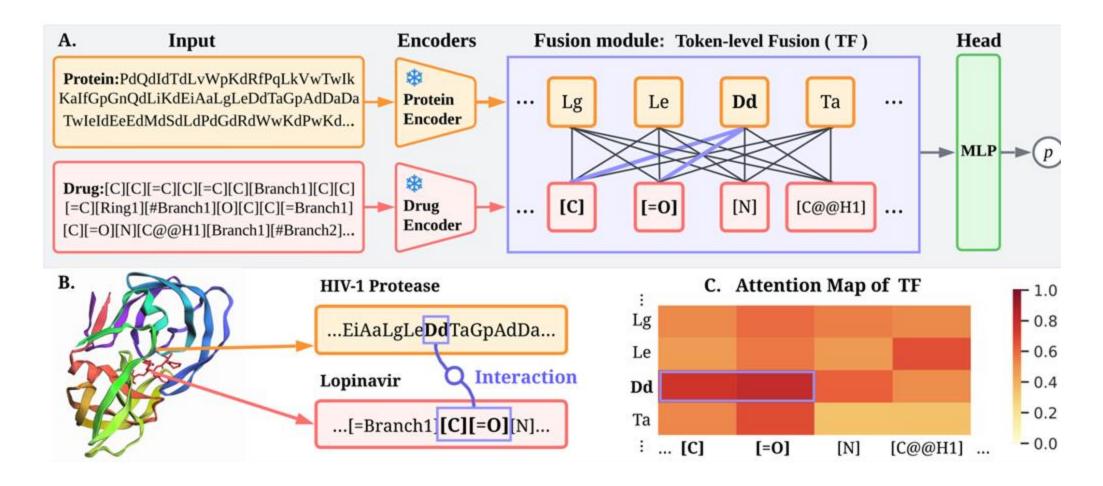

- Knowledge aware pretraining
- Knowledge integration finetuning
- Knowledge editing
- Knowledge unlearning


c. Synergized LLMs + KGs

Categorization over different stages

Integrating scientific knowledge can occur at any stage in the development of LLMs

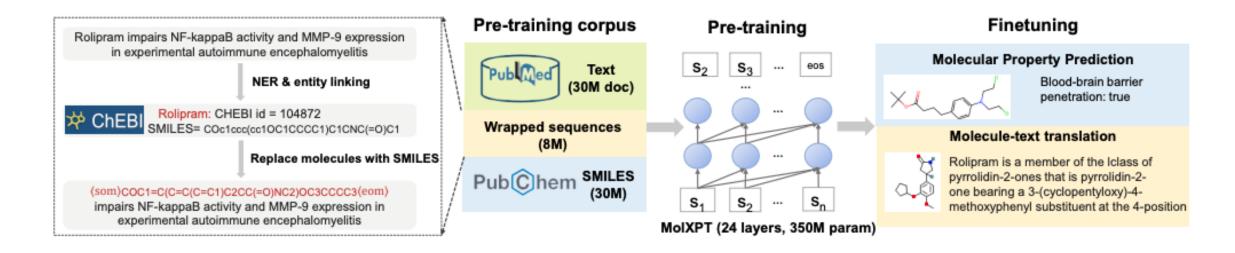
Bi-Encoder vs. Cross-Encoder


Bi-Encoder: Efficient encoding of individual entities can speed up retrieval and computation, but may sacrifice finer-grained interactions between different encoders.

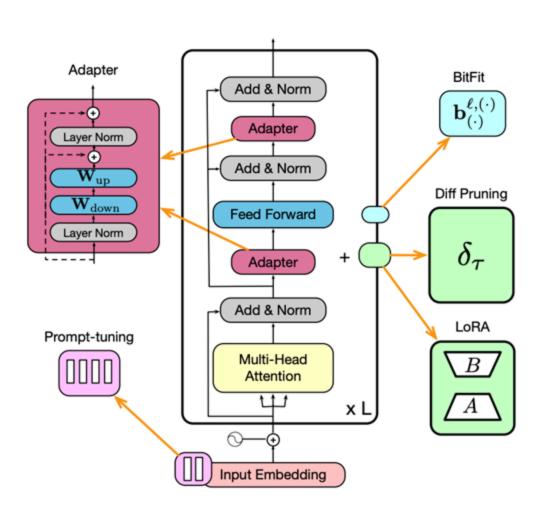
High efficiency.

Cross-Encoder: Encodes entities jointly, capturing more detailed interactions, but at the cost of greater computational resources and time.

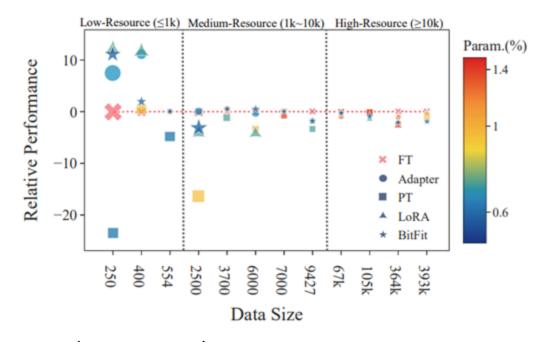
High effectiveness.


Bi-Encoder for Drug-Target Prediction

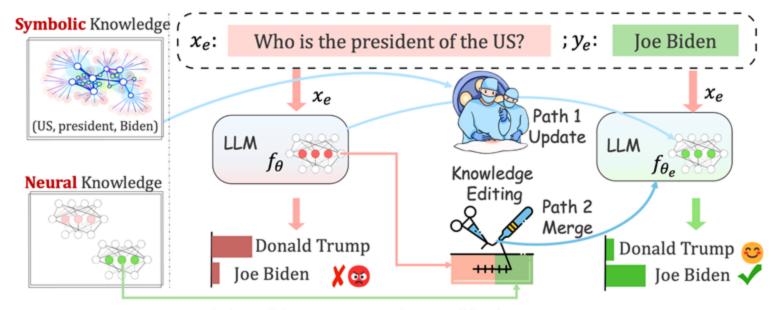
FusionDTI uses a token-level fusion module to effectively learn fine-grained information for drug-target interaction.


Cross-Encoder for molecular property prediction

MolXPT: Wrapping Molecules with Text for Generative Pre-training

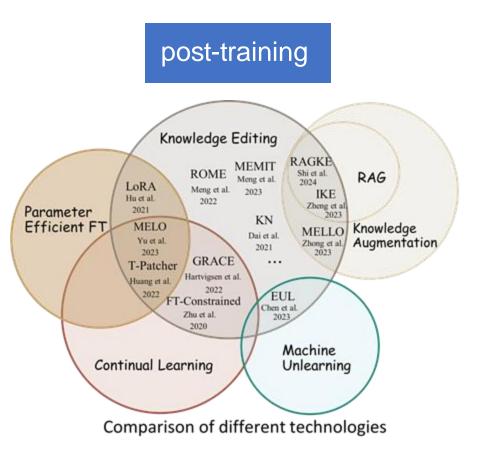

- A unified language model of text and molecules pre-trained on SMILES (a sequence representation of molecules) wrapped by text
- Text and SMILES are tokenized separately (molecular are encoded)

Integration Techniques of LLMs


Parameter-Efficient Fine-Tuning (PEFT):

Techniques like Adapters, Prefix Tuning, LoRA, Diff Pruning, BitFit or Prompt-tuning that fine-tune only a small subset of model parameters, reducing computational costs while maintaining performance.

Revisiting Parameter-Efficient Tuning: Are We Really There Yet? (EMNLP 2022) Link


Knowledge Editing

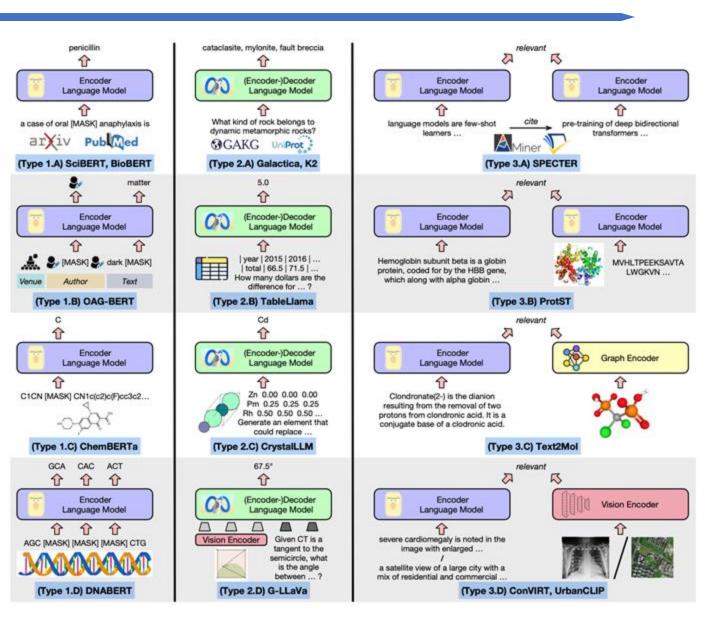
Knowledge Editing Types: Insertion Modification Erasure

LLMs notoriously hallucinate, perpetuate bias, and factually decay, so we should be able to adjust specific behaviors of pre-trained models.

Easyedit: An easy-to-use knowledge editing framework for large language models: https://github.com/zjunlp/EasyEdit

Outline

Knowledge Incorporation Frameworks

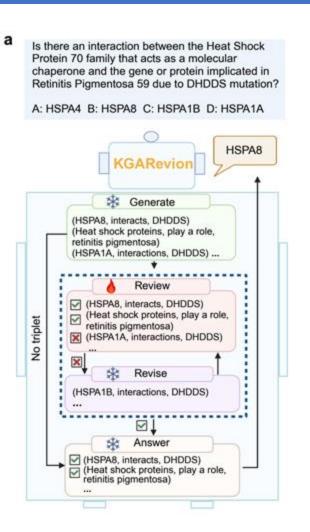


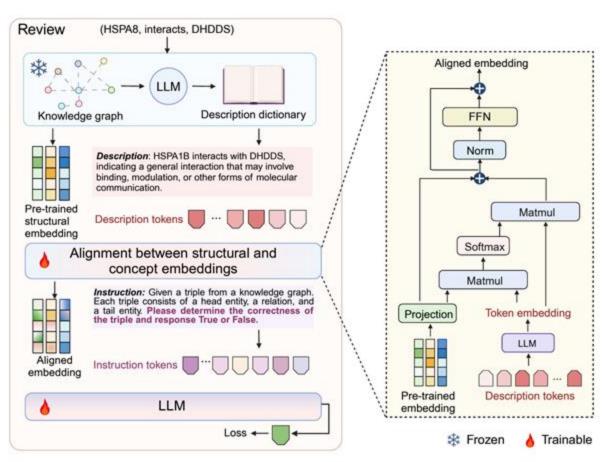
KG Integration for Scientific NLP Tasks

KG Integration for Scientific Prediction Tasks

KG Integration for Scientific NLP Tasks

- Question Answering [5]
- Entity Linking [4]
- Document Classification [5]
- Summarisation/Note Generation [14]
- Hypothesis Generation [15]
- Knowledge Graph Construction and Completion [1]
- Reasoning [12, 15]

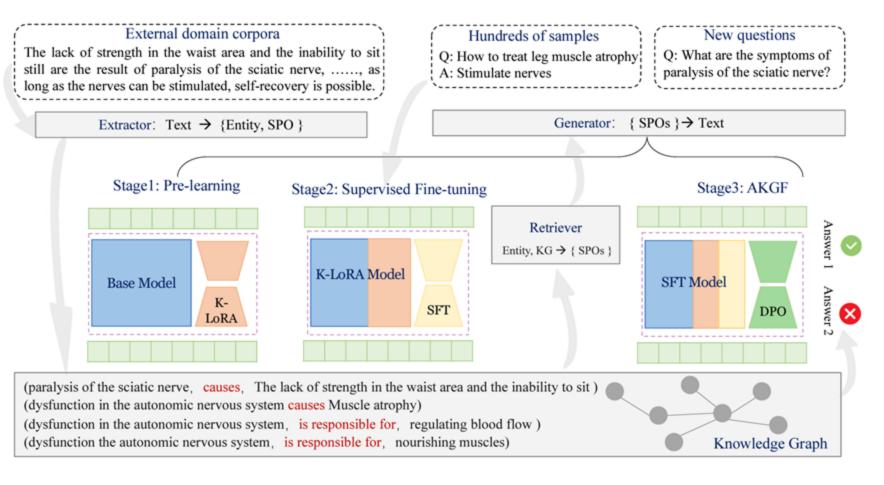

KG Integration for Clinical Text Data Generation


Clinical Text Data Generation fine-tune 1. Clinical Knowledge 2. Knowledge-Infused Data Generation 3. Language Extraction Model Prompt Fine-Tuning Suppose you need to create a dataset for disease recognition. Your task **Topics From KG** is to: 1. Generate a sentence about disease. Stroke, Covid-19, ... Output a list of named entity about disease only. Pretrained 3. The sentence should mention the disease named (Stroke). Model 4. The sentence should mimic the style of {medical literature}. Some examples are: **Topics From LLM** Sentence: "The development of tolerance to the muscular rigidity Diabetes, Gout, ... produced by morphine was studied in rats." Disease: [muscular rigidity] Synthetic Data Styles From LLM **Synthetic Data** Sentence: "Elevated levels of cholesterol in the blood are associated Fine-Tuned Medical literature, with an increased risk of cardiovascular diseases such as stroke and Clinical reports, heart attack." Disease: [cardiovascular diseases, stroke, heart attack] (a) HOC (b) MEDIQA-RQE

CLINGEN is a knowledge-informed framework for clinical data generation. This two-step methodology harnesses the emergent capabilities of LLMs and external knowledge from KGs to facilitate the synthesis of clinical data, even with few-shot examples only.

Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models. (ACL 2024) Link

KG Integration for QA Tasks


Question Answering (QA)
KG: Heterogeneous
(primeKG)

KGAREVION a KG-based LLM agent for complex medical QA that leverages non-codified knowledge of LLMs and structured, codified knowledge of medical concepts within KGs.

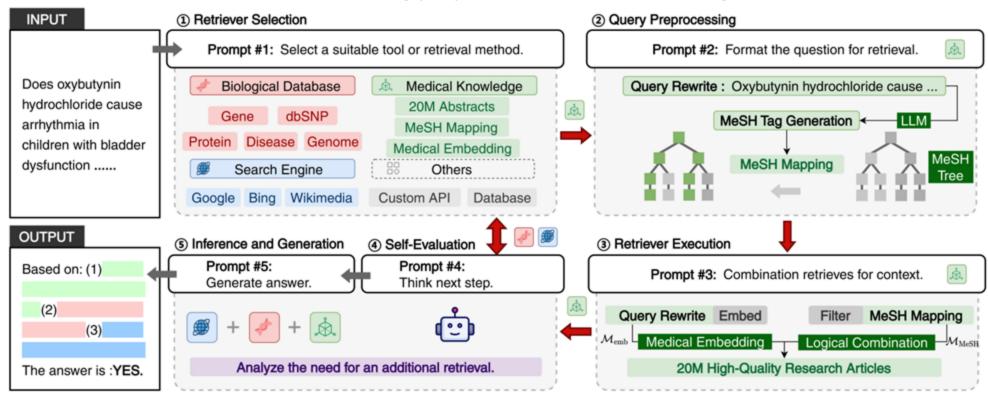
Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine. (2024) Link

KG Integration for QA Tasks

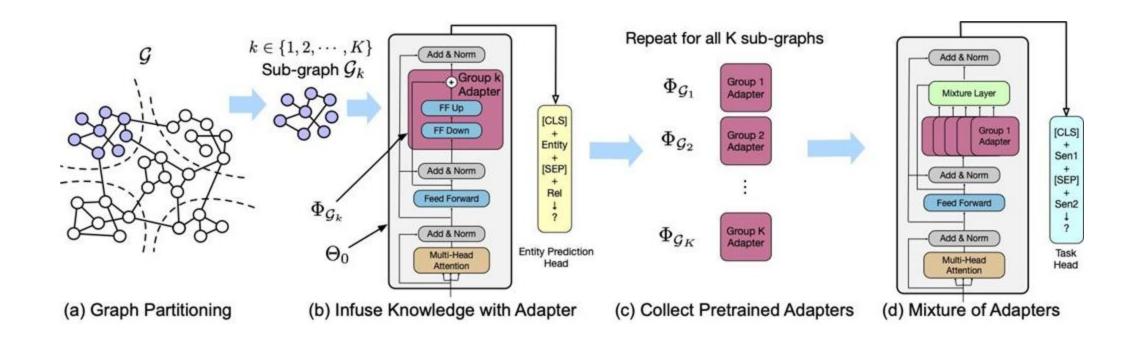
Question Answering (QA)

The Enhanced LLM with Knowledge Pre-learning and Feedback (ELPF) framework can be divided into four main stages.

- 1) Efficient construction of domain KGs
- 2) Pre-learning with K-LoRA
- 3) SFT with KG retrieval
- 4) AKGF: KG acts as an evaluator


post-train+fine-tune

Efficient Knowledge Infusion via KG-LLM Alignment. (ACL 2024) Link


RAG for Biological Question Reasoning

 BIORAG adaptively select knowledge source and domain-specific tools to advance the biology question-reasoning task.

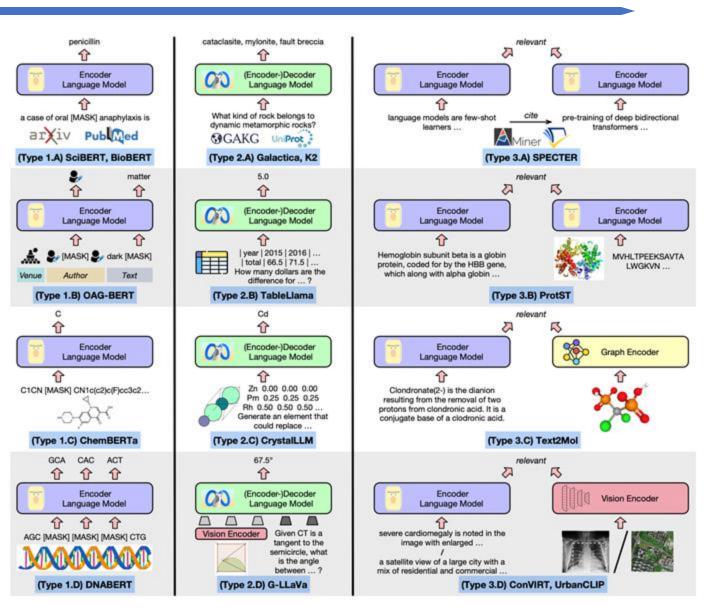
Dealing with large scale knowledge graphs

- Partitioning it into smaller sub-graphs, e.g. METIS
- Infusing their specific knowledge into LLMs using lightweight adapters

adapter *

Outline

Knowledge Incorporation Frameworks



KG Integration for Scientific NLP Tasks

KG Integration for Scientific Prediction Tasks

KG Integration for Scientific Prediction Tasks

Gene-Disease Association (GDA) [19]
Protein Function Prediction [18]
Drug Repurposing [18]

Drug-Target Interaction (DTI) [8,17]

Text2Mol [3]

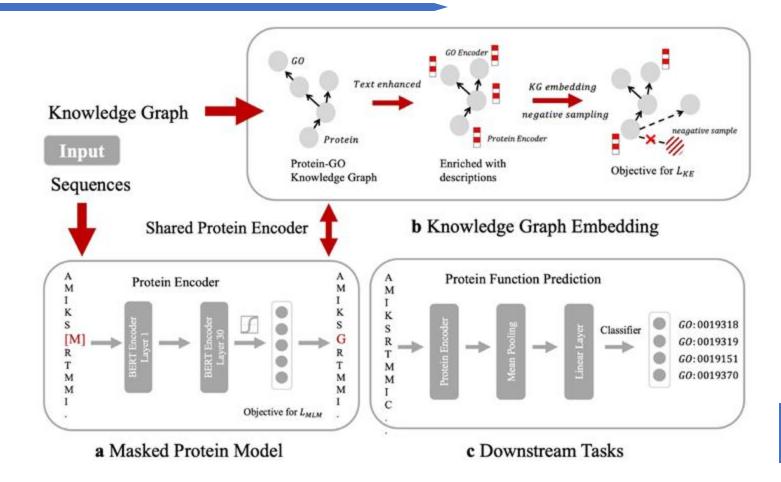
Amino acid contact prediction

•••

Gene-Disease Association (GDA)

Pre-training Disease Descriptions **Protein Sequences** Alpha-1-B glycoprotein: M S M L V V Adenocarcinoma: A common cancer FLLLWGVT MASK GPVTEA characterized [MASK] thepresence of malignant glandular cells. [MASK], AIFYETQ [MASK] SLWAESE adenocarcinomas are classified [MASK] SLLKPLANVTLTC [MASK] A to the growth pattern (e.g., papillary, HLETPDFQLFKNGVAQEP alveolar) or according to the [MASK] VHLDS [MASK] AIKHQFLLT product (e.g., mucinous, serous) ... GDTQGRYRCRSGLSTG... Text encoder Protein encoder Fusion Module Pooling Pre-training Head (Contrastive Loss Function) Fine-tuning Text encoder Protein encoder Fusion Module Pooling Prediction Head (Classifier)

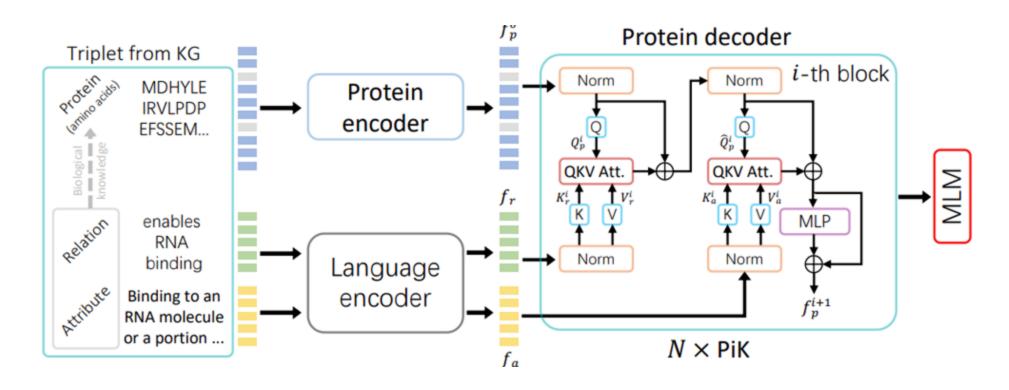
FusionGDA utilises bi-encoder with a fusion module to enrich the gene and disease semantic representations encoded by PLMs.


KG: Heterogeneous GDA

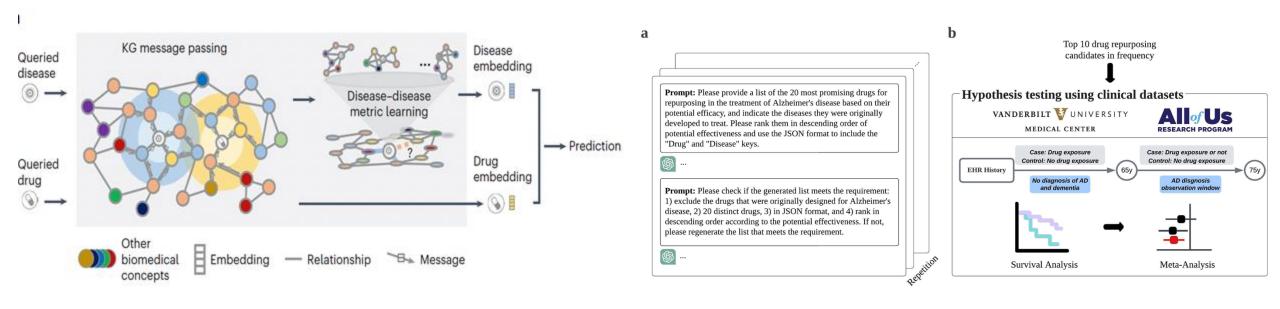
Encoder method: Bi-Encoder

post-train + fine-tune

Heterogeneous biomedical entity representation learning for gene–disease association prediction. Briefings in Bioinformatics (2024) <u>Link</u>


Protein Function Prediction

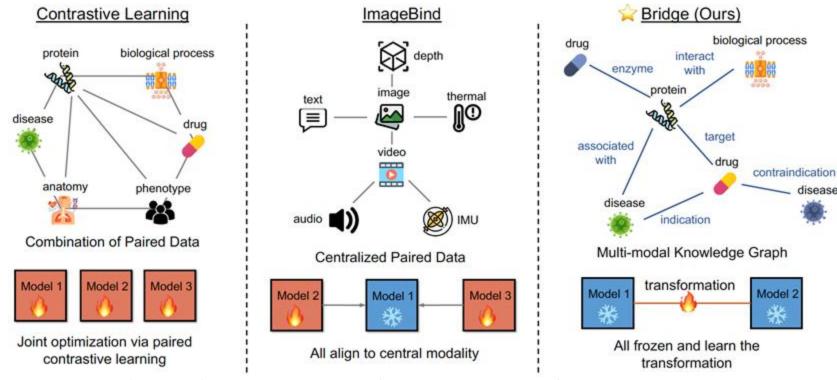
post-train + fine-tune


- 1. OntoProtein constructs a novel large-scale knowledge graph that consists of GO (Gene Ontology) and its related proteins, and gene annotation texts or protein sequences describe all nodes in the graph.
- 2. This KG was integrated by a novel contrastive learning with knowledge-aware negative sampling to jointly optimize the knowledge graph and protein embedding during pre-training

Amino acid contact prediction

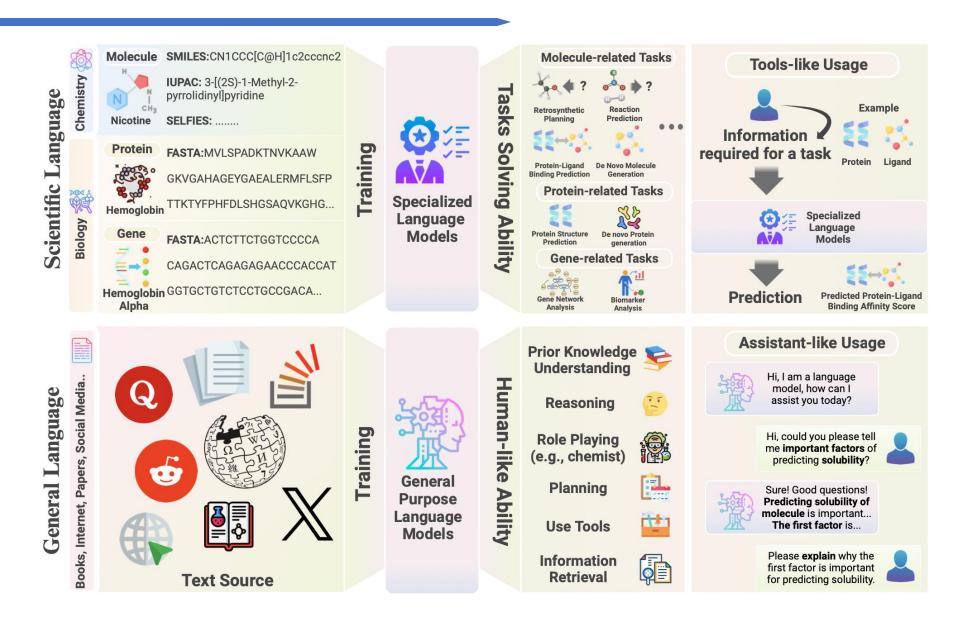
- KeAP is trained on a knowledge graph that consists of about five million triplets from ProteinKG25
- KeAP explores knowledge graphs at a more granular level by applying cross-attention to sequences of amino acids and words from relation and attributes.
- KeAP can be trained using the MLM objective only (both contrastive loss and MLM are used in OntoProtein)

Drug repurposing

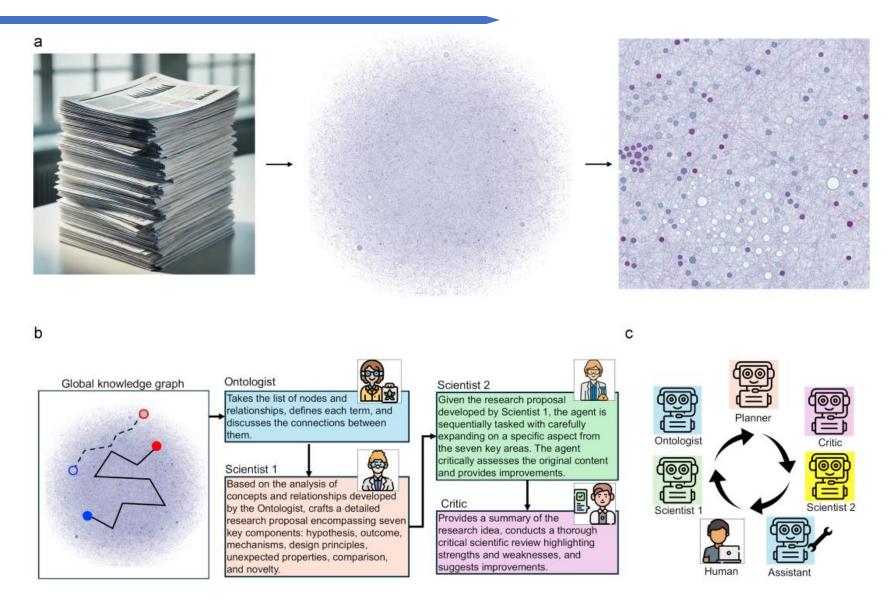

TxGNN, a graph foundation model for zero-shot drug repurposing, identifying therapeutic candidates even for diseases with limited treatment options or no existing drugs. Trained on a medical knowledge graph, TxGNN uses a graph neural network and metric learning module to rank drugs as potential indications and contraindications for 17,080 diseases.

a Employing iterative queries of ChatGPT to recommend twenty drugs for AD repurposing.

b Evaluating the potential efficacy of the ten most frequently suggested drugs using electronic health records (EHR) data from two large clinical databases.

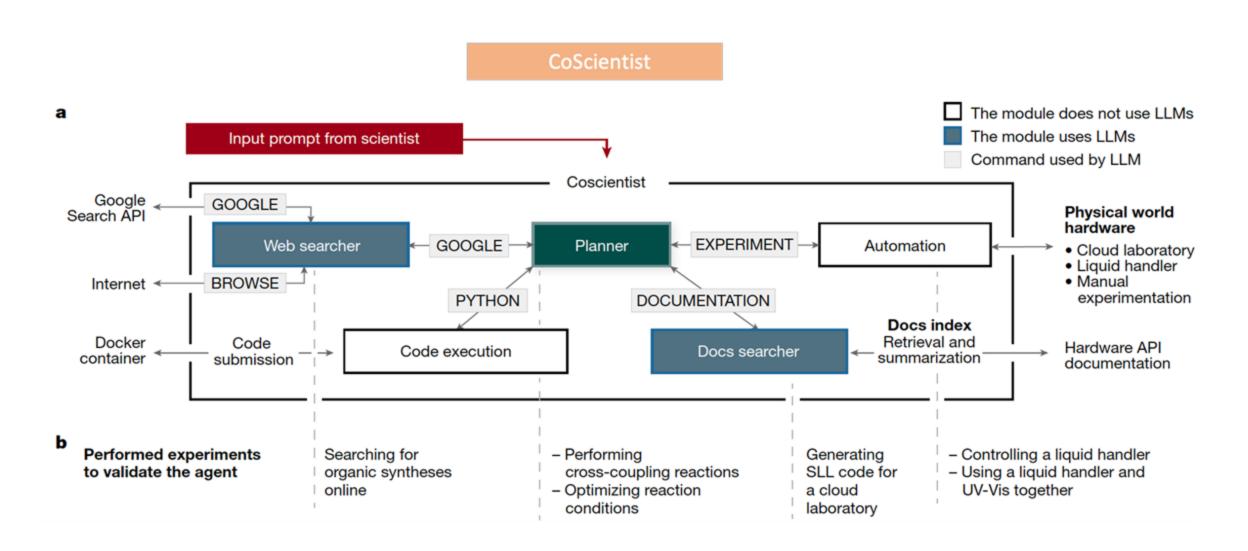

Leveraging generative AI to prioritize drug repurposing candidates for Alzheimer's disease with real-world clinical validation. **Nature**, **2024**

The comparison of cross-modality methods



- 1. **Multimodal contrastive learning**, e.g., CLIP, learns from a combination of paired data, updating all unimodal encoders.
- 1. ImageBind aligns all modalities with the central modality, with only the central model frozen.
- 1. **BioBRIDGE** (ICLR 2024) learns the transformation across modalities (Bridge Module) from a multi-modal KG, keeping all FMs frozen.

Scientific Discovery Agent: Unifying Scientific NLP and Predictions



Multiple Agents with KGs for Scientific Discovery

SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning, <u>link</u>

Coscientist: Chemistry - Unifying Physical World

Take-away

What KG brings to LLMs?

- Enhanced Knowledge Representation
- Improved Explainability, Reasoning and Inference
- Increased Accuracy and Reduced Hallucination

How to effectively incorporate KGs into LLMs?

- Backbone Model (protein, molecular, text, visual)
- Encoder Method (bi-encoder, cross-encoder)
- Integration Stages (pretrain, post-train, fine-tune, ICL)
- Integration Techniques (adapter, lora, ICL, RAG, LLM Agent)

References

- [1] Pretrain-KGEs: Learning Knowledge Representation from Pretrained Models for Knowledge Graph Embeddings, EMNLP 2020
- [2] ERNIE: Enhanced Language Representation with Informative Entities, ACL 2019
- [3] MolXPT: Wrapping Molecules with Text for Generative Pre-training, ACL 2023
- [4] Self-Alignment Pretraining for Biomedical Entity Representations, NAACL 2021
- [5] Mixture-of-partitions: Infusing large biomedical knowledge graphs into BERT, EMNLP 2021
- [7] BioBRIDGE: Biobridge: Bridging biomedical foundation models via knowledge graph, ICLR 2024
- [8] FusionDTI: Fine-grained Binding Discovery with Token-level Fusion for Drug-Target Interaction, AI4Science 2024
- [9] MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering, AMIA 2024
- [10] Editing Factual Knowledge and Explanatory Ability of Medical Large Language Models CIKM 2024
- [11] KRAGEN: a knowledge graph-enhanced RAG framework for biomedical problem solving using large language models, bioinformatics
- [12] BIORAG: A RAG-LLM Framework for Biological Question Reasoning, Arxiv 2024
- [13] SaprotHub: Making Protein Modeling Accessible to All Biologists
- [14] Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models. (ACL 2024)
- [15] SciAgent: Tool-augmented Language Models for Scientific Reasoning
- [16] Imagebind: One embedding space to bind them all. (CVPR 2023)
- [17] Knowledge Enhanced Representation Learning for Drug Discovery (AAAI 2024). Link
- [18] Ontoprotein: Protein pretraining with gene ontology embedding.(ICLR 2022)
- [19] Heterogeneous biomedical entity representation learning for gene–disease association prediction. Briefings in Bioinformatics (2024) Link
- [20] Leveraging generative AI to prioritize drug repurposing candidates for Alzheimer's disease with real-world clinical validation, Nature

Thank you!
Q&A